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Abstract. We consider quasi-self-adjoint extensions of the symmetric operator

A = −(sgn x) d2

dx2 , dom(A) = {f ∈ W 2
2 (R) : f(0) = f ′(0) = 0}, in the Hilbert

space L2(R). The main result is a criterion of similarity to a normal operator
for operators of this class. The spectra and resolvents of these extensions are
described. As an application we describe the main spectral properties of the

operators (sgn x)
(
− d2

dx2 + cδ
)

and (sgn x)
(
− d2

dx2 + cδ′
)
.
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Introduction

Consider the symmetric operator A in the Hilbert space L2(R) defined by

dom(A) = {f ∈ W 2
2 (R) : f(0) = f ′(0) = 0},

(Af)(x) = −(sgnx)f ′′(x) for f ∈ dom A. (0.1)

The object of investigation is the similarity of quasi–self-adjoint extensions of A
(see [1]) to a normal operator. Let us recall that two operators T1 and T2 in
a Hilbert space H are called similar if there exists a bounded operator C with
bounded inverse C−1 such that T1 = C−1T2C.

Spectral problems

(Ly)(x) = λr(x)y(x), (0.2)
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where L is an elliptic operator and the function r(x) change sign, occur in certain
physical models (see [4] and references therein). The question whether the system
of eigenfunctions of the problem (0.2) forms a Riesz basis was studied in [3], [4],
[19], [32] [33], [34] (see also references in [34]). If the operator 1

r L has a nonempty
continuous spectrum, then the corresponding problem is the similarity of 1

r L to a
self-adjoint (normal) operator.

In [9], [6], [15], [7], [8], [16] the Krein–Langer spectral theory of definitizable
operators (see [28]) was applied to similarity problems for quasi J-nonnegative
operators (see [15]) of the form 1

r L. In particular, B. Ćurgus and B. Najman [7]
showed that the operator

Ã = −(sgn x)
d2

dx2
, dom(Ã) = W 2

2 (R), (0.3)

is similar to a self-adjoint one.
This result was proved by another method in [21]; the method is based on

the Naboko–Malamud criterion of similarity to a self–adjoint operator [31], [29]
(see also [5]). One more proof is presented in [20]. In the recent papers [22], [13],
[14], [24] the Naboko-Malamud criterion was applied to different J-self-adjoint
differential operators.

Differential operators with an indefinite weight are of interest from one more
point of view. The characteristic function W (·) of the operator 1

r L as well as the
corresponding J-form J−W ∗JW is unbounded in C+. Therefore known sufficient
conditions of similarity to a self–adjoint operator cannot be applied here (see [30],
[20] and bibliography therein).

In the present paper we describe quasi-self-adjoint extensions AB of the sym-
metric operator A in terms of boundary triplets (see [18], [11]). In Sections 3–4
we formulate a criterion of similarity of AB to a normal (self–adjoint) operator.
In order to illustrate these results in Section 5 we obtain simple similarity criteria
for operators with local point interactions at zero

Ã1 := sgnx

(
− d2

dx2
+ c1δ

)
, c1 ∈ C, Ã2 := sgnx

(
− d2

dx2
+ c2δ

′
)

, c2 ∈ C.

(See definitions of the operators Ã1, Ã2 in [2] and also in Section 5 of the present
paper).

The results of the paper were announced in [23].
Notation: By H,H we denote separable Hilbert spaces. The set of all bounded

linear operators from H to H is denoted by [H,H] or [H] if H = H. C(H) stands for
the set of closed densely defined operators in H. Let T be a linear operator in a
Hilbert space H. In what follows dom(T ), ker(T ), ran(T ) are the domain, kernel,
range of T , respectively. We denote by σ(T ), σr(T ), σc(T ) the point, residual
and continuous spectra of T . By σp(T ) the set of eigenvalues of T is indicated.
We denote the resolvent set by ρ(T ); RT (λ) := (T − λI)−1, λ ∈ ρ(T ), is the
resolvent of T . Recall that σr(T ) = {λ ∈ σ(T ) \ σp(T ) : ran(T − λI) 6= H},
σc(T ) = σ(T ) \ (σp(T )

⋃
σr(T )).



Differential operators with indefinite weights and a point interaction 3

We set C± := {λ ∈ C : ± Im λ > 0}, R+ := (0,+∞), R− := (−∞, 0). By
χI(t) we denote the characteristic function of the interval I, i.e., χI(t) = 1 for
t ∈ I, χI(t) = 0 for t 6∈ I. Finally, we set χ±(t) := χR±(t).

1. Preliminaries

1.1. A similarity criterion

Our approach is based on the concept of boundary triplets (see [18], [11]) and the
resolvent similarity criterion obtained by S. N. Naboko [31] and M. M. Malamud
[29] (in [5] this criterion was obtained under an additional assumption).

Theorem 1.1 ([29, 31]). A closed operator T in a Hilbert space H is similar to a
self-adjoint one if and only if σ(A) ⊂ R and for all f ∈ H the inequalities

sup
ε>0

+∞∫
−∞

ε ‖RT (µ + iε) f‖2 dµ ≤ C ‖f‖2 ,

sup
ε>0

+∞∫
−∞

ε ‖RT∗ (µ + iε) f‖2 dµ ≤ C∗ ‖f‖2 , (1.1)

are valid with constants C and C∗ independent of f .

1.2. Linear relations

Definition 1.1. (i) A closed linear relation Θ in H is a closed subspace Θ of H⊕H.
(ii) The closed linear relation Θ is symmetric if for all {f1, g1}, {f2, g2} ∈ Θ

the condition
(g1, f2)− (f1, g2) = 0, (1.2)

is satisfied.
(iii) The closed linear relation Θ is self-adjoint if it is maximal symmetric,

i.e., Θ is symmetric and there does not exist a closed symmetric relation Θ̃ such
that Θ is properly contained in Θ̃.

Let us illustrate closed linear relations by simple examples.

Example 1.1. (i) Let B be a closed operator in H, not necessarily bounded. Then
the graph G(B) of B is a closed relation in H. Moreover, if B = B∗ is a self–
adjoint operator, then G(B) is a self–adjoint relation in H.

(ii) The subspaces Θ0 := {0}×H, Θ1 := H×{0} of H×H are self-adjoint
relations in H. Obviously, Θ0 is not the graph of any operator.

1.3. Boundary triplets

Let A ∈ C(H) be a closed symmetric operator with equal deficiency indices n+(A) =
n−(A) (n±(T ) := dim N±i and by Nλ := ker(T ∗ − λ) the deficiency subspaces of
A are indicated). Without loss of generality we can assume that A is simple. This
means that A has no self-adjoint parts.
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Definition 1.2 ([1]). (i) A closed extension Ã of A is called a proper extension if
A ⊂ Ã ⊂ A∗ . The set of all proper extensions is denoted by ExtA.

(ii) A proper extension Ã is called a quasi-self-adjoint if

dim(dom(Ã)/ dom(A)) = n±(A). (1.3)

We recall the definition of a boundary triplet which may be considered as an
abstract version of the second Green formula.

Definition 1.3 ([18]). A triplet Π = {H,Γ0,Γ1} consisting of an auxiliary Hilbert
space H and linear mappings

Γj : dom(A∗) −→ H, j ∈ {0, 1}, (1.4)

is called a boundary triplet for the adjoint operator A∗ of A if the following two
conditions are satisfied:

(i) The second Green’s formula

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom(A∗), (1.5)

takes place and
(ii) the mapping

Γ : dom(A∗) −→ H⊕H, Γf := {Γ0f,Γ1f}, (1.6)

is surjective.

The above definition allows one to describe the set ExtA in the following way
(see [10, 11]).

Proposition 1.1 ([10, 11]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then
the mapping Γ establishes a bijective correspondence Ã → Θ := Γ(dom(Ã)) between
the set ExtA and the set of closed linear relations in H.

By Proposition 1.1 the following definition is natural.

Definition 1.4. Let Π = {H,Γ0,Γ1} be a boundary triplet for the operator A∗.
(i) Denote AΘ = Ã if Θ = Γ(dom(Ã)), that is

AΘ := A∗|DΘ, where DΘ := {f ∈ dom(A∗) : {Γ0f,Γ1f} ∈ Θ}. (1.7)

(ii) If Θ = G(B) is the graph of B ∈ C(H), then dom(AΘ) is determined by
the equation dom(AB) = DB := DΘ = ker(Γ1 −BΓ0). We set AB := AΘ.

Let us make the following remarks.

Remark 1.1. 1) The deficiency indices n±(A) are equal to the dimension of H,
i.e., dim(H) = n±(A).

2) There exist two self-adjoint extensions Aj := A∗| ker(Γj) which are natu-
rally associated to a boundary triplet. According to Definition 1.4 Aj = AΘj , j ∈
{0, 1}, where Θ0 = {0} × H, Θ1 = H × {0}. Conversely, if A0 is a self-adjoint
extension of A, then there exists a boundary triplet Π = {H,Γ0,Γ1} such that
A0 = A∗| ker(Γ0).
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3) Θ is the graph of an operator B ∈ C(H) iff Ã and A0 are disjoint, i.e.,
dom(Ã) ∩ dom(A0) = dom(A).

4) Θ = G(B) with B ∈ [H] iff Ã and A0 are transversal, i.e., Ã and A0 are
disjoint and dom(Ã) + dom(A0) = dom(A∗).

Definition 1.5 ([12]). The proper extension Ã ∈ ExtA is called almost solvable if
there exists a boundary triplet Π = {H,Γ0,Γ1} and an operator B ∈ [H] such that

dom(Ã) = dom(AB) := ker(Γ1 −BΓ0). (1.8)

The set of almost solvable extensions is denoted by AsA. Note that the class
AsA is sufficiently wide. Proper extensions having two regular points λ1, λ2 ∈ C
such that Im λ1 · Im λ2 < 0 belong to AsA. All quasi-self-adjoint extensions are in
AsA if n±(A) < ∞.

1.4. Weyl functions

It is well known that Weyl functions are an important tool in the direct and inverse
spectral theory of singular Sturm–Liouville operators. In [10, 11] the concept of
Weyl function was generalized to an arbitrary symmetric operator A with infinite
deficiency indices n+(A) = n−(A). In this subsection we recall basic facts about
Weyl functions.

Definition 1.6 ([10, 11]). Let Π = {H,Γ0,Γ1} be a boundary triplet for the operator
A∗. The Weyl function of A corresponding to the boundary triplet {H,Γ0,Γ1} is
a unique mapping

M(·) : ρ(A0) −→ [H] (1.9)
satisfying

Γ1fλ = M(λ)Γ0fλ for all fλ ∈ Nλ, λ ∈ ρ(A0), (1.10)

where Nλ := ker(A∗ − λI).

It is well known (see [10, 11]) that the above implicit definition of the Weyl
function is correct and M(·) is an R-function obeying 0 ∈ ρ(Im(M(i))). The Weyl
function immediately provides some information about the “spectral properties”
of proper extensions. We confine ourselves to the case of almost solvable extensions
of the symmetric operator A.

Proposition 1.2 ([11, 12]). Suppose that Π = {H,Γ0,Γ1} is a boundary triplet for
A∗, M(·) is the corresponding Weyl function, λ ∈ ρ(A0) and B ∈ [H]. Then:

1) λ ∈ ρ(AB) if and only if 0 ∈ ρ(B −M(λ));
2) λ ∈ σi(AB) if and only if 0 ∈ σi(B −M(λ)), i ∈ {p, r, c}.

1.5. γ-fields

With each boundary triplet we can associate a so-called γ-field.

Definition 1.7 ([11]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. The γ-field
γ(·) corresponding to Π is defined by

γ(λ) := (Γ0|Nλ)−1 : H −→ Nλ, λ ∈ ρ(A0). (1.11)
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One can easily check that

γ(λ) = (A0 − λ0)(A0 − λ)−1γ(λ0), λ, λ0 ∈ ρ(A0), (1.12)

and consequently γ(·) is a γ-field in the sense of [26]. It is shown in [11] that the
γ-field γ(·) and the Weyl function M(·) are related by

M(λ)−M(λ0)∗ = (λ− λ̄0)γ(λ0)∗γ(λ), λ, λ0 ∈ ρ(A0). (1.13)

The relation (1.13) means the M(·) is a Q-function in the sense of [26].
The following version of the Krein-Naimark formula for canonical resolvents

(see for instance [26]) is based on the notion of boundary triplets.

Theorem 1.2 ([10, 11]). Let Ã be an almost solvable extension of A (Ã ∈ AsA),
i.e., Ã = AB with B ∈ [H] for some boundary triplet Π = {H,Γ0,Γ1}. Then

(AB − λ)−1 = (A0 − λ)−1 + γ(λ)(B −M(λ))−1γ∗(λ), λ ∈ ρ(AB). (1.14)

Here M(·) and γ(·) are the Weyl function and γ–field corresponding to the triplet
Π.

2. Extensions of the minimal operator

2.1. Boundary conditions

Consider the operator A of the form (0.1). It is obvious that A is a closed simple
symmetric operator with deficiency indices n±(A) = 2.

We denote by
√

z the branch of the multifunction on the complex plane C
with the cut along R−, singled out by the condition

√
−1 + i0 = i.

Theorem 2.1. (i) The adjoint operator A∗ has the form

A∗ = −(sgnx)
d2

dx2
, dom(A∗) = W 2

2 (R \ {0}) := W 2
2 (R−)⊕W 2

2 (R+). (2.1)

(ii) Let mappings Γj : W 2
2 (R \ {0}) → C2, j = {0, 1}, be given by

Γ0f =
(

f(+0)
f ′(−0)

)
, Γ1f =

(
f ′(+0)
−f(−0)

)
. (2.2)

Then Π = {C2,Γ0,Γ1} is a boundary triplet for A∗.
(iii) The corresponding Weyl function M(·) is

M(λ) :=
(
−
√
−λ 0

0 −1/
√

λ

)
, λ ∈ C \ R. (2.3)

(iv) The corresponding γ–field γ(λ) : C2 → Nλ is

γ(λ)
(

c+

c−

)
:= c+ · e−

√
−λxχ+(x) +

c−√
λ
· e
√

λxχ−(x), c± ∈ C. (2.4)
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Proof. The first statement is obvious. Moreover, we have

(A∗f, g)− (f, A∗g) = f ′(+0)g(+0) + f ′(−0)g(−0)−

− f(+0)g′(+0)− f(−0)g′(−0), f, g ∈ dom(A∗). (2.5)

Hence (ii) follows from Definition 1.3.
Note that

Nλ = {fλ(x) := c+ · e−
√
−λxχ+(x) + c− · e

√
λxχ−(x) : c± ∈ C}. (2.6)

Combining (2.2) and (2.6), one gets

Γ0fλ =
(

c+

c−
√

λ

)
, Γ1fλ =

(
−c+

√
−λ

−c−

)
. (2.7)

By Definitions 1.6 and 1.7, we easily obtain (2.3) and (2.4). �

Let us introduce the following boundary conditions at zero{
a11f(−0) + a12f

′(−0) + a13f(+0) + a14f
′(+0) = 0

a21f(−0) + a22f
′(−0) + a23f(+0) + a24f

′(+0) = 0 , aij ∈ C. (2.8)

By Definition 1.2, a quasi-self-adjoint extension Ã of the operator A has the form

Ã = A(aij) = A∗|dom(A(aij)),

dom(A(aij)) = {f ∈ W 2
2 (R \ {0}) : f satisfies conditions (2.8)}, (2.9)

with the matrix

(aij) :=
(

a11 a12 a13 a14

a21 a22 a23 a24

)
such that

rank(aij) = n±(A) = 2. (2.10)

Consider three cases.

1) Let
(

a11 a12

a21 a22

)
=
(

0 0
0 0

)
or
(

a13 a14

a23 a24

)
=
(

0 0
0 0

)
. Then

Ã = A− ⊕ A+, where A± is an operator in L2(R±). By condition (2.10), we see
that one of the operators A−, A+ is a symmetric with deficiency indices (1,1) and
another one is an adjoint to a symmetric operator with deficiency indices (1,1).
Hence C \ R ⊂ σp(Ã) and Ã is not similar to a normal operator.

2) Suppose that
(

a11 a12

a21 a22

)
and

(
a13 a14

a23 a24

)
have a zero column. Since

rank(aij) = 2, it follows that Ã = A− ⊕ A+, where A+ and A− are self–adjoint
operators in L2(R+) and L2(R−), respectively. Thus Ã = Ã∗.



8 I. M. Karabash and A. S. Kostenko

3) Suppose that there are three nonzero columns in (aij). In this case one of
the determinants

∆1 =
∣∣∣∣ a11 a14

a21 a24

∣∣∣∣ , ∆2 =
∣∣∣∣ a12 a13

a22 a23

∣∣∣∣ ,
∆3 =

∣∣∣∣ a12 a14

a22 a24

∣∣∣∣ , ∆4 =
∣∣∣∣ a11 a13

a21 a23

∣∣∣∣ (2.11)

does not vanish.
Evidently, only the case (3) is of interest to us.

2.2. The case ∆1 6= 0
Let ∆1 6= 0. (The cases ∆2 6= 0, ∆3 6= 0, and ∆4 6= 0 will be considered in Section
4.) Then conditions (2.8) take the form{

f ′(+0) = b11f(+0) + b12f
′(−0)

−f(−0) = b21f(+0) + b22f
′(−0). (2.12)

Hence, by Definition 1.5, A(aij) = AB = A∗| ker(Γ1 −BΓ0). Here

B =
(

b11 b12

b21 b22

)
∈ C2×2

and the boundary triplet Π = {C2,Γ0,Γ1} is of the form (2.2).
In what follows AB stands for the operator

AB := − sgn x
d2

dx2
, dom(AB) = {f ∈ W 2

2 (R\{0}) : f satisfies (2.12)}. (2.13)

For B ∈ C2×2 and the Weyl function M(·) of the form (2.3) we define the
function ϕB(·) : C \ R → C by

ϕB(λ) := det(B −M(λ)), λ ∈ C \ R. (2.14)

Lemma 2.1. Suppose AB is the operator of the form (2.13) and |b12| + |b21| 6= 0;
then:

(i) σc(AB) = R;
(ii) σr(AB) = ∅;
(iii) σp(AB) = {λ ∈ C \R : ϕB(λ) = 0} = {λ ∈ C+ : ϕB(λ) = 0}∪{λ ∈ C− :

ϕB∗(λ) = 0}.

Proof. Simple calculations show that there are no eigenvalues on the real axis
and σc(AB) = R. The second and the third statements evidently follow from
Proposition 1.2. �

Lemma 2.2. Let Π = {H,Γ0,Γ1} be a boundary triplet of the form (2.2). Then

γ∗(λ)f =


+∞∫
0

f(t)e−
√
−λtdt

1√
λ

0∫
−∞

f(t)e
√

λtdt

 , f ∈ L2(R). (2.15)
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Proof. By Theorem 2.1.(iv), γ∗(·) is a map from L2(R) to C2. To find γ∗(·) we use
the equation

(γ(λ)c, f)L2(R) = (c, γ∗(λ)f)C2 , c =
(

c1

c2

)
∈ C2, f ∈ L2(R). (2.16)

Combining (2.4) and (2.16), one gets

c1 ·
+∞∫
0

f(t)e−
√
−λtdt+

c2√
λ
·

0∫
−∞

f(t)e
√

λtdt = c1 · (γ∗(λ)f)1 +c2 · (γ∗(λ)f)2. (2.17)

Hence (2.15) immediately follows from (2.17). �

Let us denote

y+(f, λ) :=

+∞∫
0

f(t)e−
√
−λtdt, y−(f, λ) :=

0∫
−∞

f(t)e
√

λtdt, λ ∈ C \ R.

(2.18)

Lemma 2.3. Let the operator AB be of the form (2.13) and A0 = A∗| ker Γ0. Then(
(AB − λ)−1f − (A0 − λ)−1f

)
(x) =

=
e−
√
−λx · χ+(x)
ϕB(λ)

((
b22 +

1√
λ

)
y+(f, λ)− b12√

λ
· y−(f, λ)

)
+

+
e
√

λx · χ−(x)√
λ · ϕB(λ)

(
b11 +

√
−λ√

λ
· y−(f, λ)− b21 · y+(f, λ)

)
,

f ∈ L2(R), λ ∈ ρ(AB). (2.19)

Here ϕB(·) and y±(f, ·) are given by (2.14) and (2.18), respectively.

Proof. By (2.3), for λ ∈ ρ(AB) (see Lemma 2.1) one obtains

(B −M(λ))−1 =
(

b11 +
√
−λ b12

b21 b22 + 1/
√

λ

)−1

=

=
1

ϕB(λ)

(
b22 + 1/

√
λ −b12

−b21 b11 +
√
−λ

)
. (2.20)

Combining (2.4), (2.15), (2.20) with formula (1.14), we get (2.19). �

3. Similarity to a normal operator

3.1. The main result

For each B ∈ C2×2 let us define the function ϕ+
B : C+ → C in the following way.

We set
ϕ+

B(λ) := ϕB(λ) = det(B −M(λ)) for λ ∈ C+, (3.1)
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and for x ∈ R by ϕ+
B(x) we denote the boundary values of ϕB(λ) in C+,

ϕ+
B(x) := lim

z→x
z∈C+

det(B −M(z)), x ∈ R ∪ {∞}. (3.2)

Note that the function ϕ+
B is analytic on C+ and continuous on C+ \ {0}.

The following similarity criterion is the main result of the paper.

Theorem 3.1 (Main Theorem). Assume that ∆1 6= 0 and the operator AB is defined
by (2.13). Let ϕ+

B and ϕ+
B∗ be the functions defined in (3.1)–(3.2) and |b12|+|b21| 6=

0. Then AB is similar to a normal operator if and only if the following conditions
hold:

(i) ϕ+
B and ϕ+

B∗ have no zeroes in the set R ∪ {∞};
(ii) ϕ+

B and ϕ+
B∗ have no zeroes of the second order in C+.

Remark 3.1. Suppose that |b12|+ |b21| = 0. Then the operator AB has the form

AB = A− ⊕A+,

where the operators A± : L2(R±) → L2(R±) are given by

A± := ∓ d2

dx2
, dom(A±) = {f ∈ W 2

2 (R±) : f(±0) + b± · f ′(±0) = 0}. (3.3)

Here b+ := −1/b11, b− := b22. Operators A± are well studied.

Remark 3.2. The function ϕ+
B has a simple form. Indeed, by (2.14) and (2.3), we

have

ϕ+
B(λ) = −ib22

√
λ + (b11b22 − b12b21)− i +

b11√
λ

, λ ∈ C+ \ {0}. (3.4)

So the conditions of Theorem 3.1 can be easily checked (see Section 5). Let us
remark that the function ϕ+

B has at most two zeroes (a zero of multiplicity k is
counted as k zeroes).

A criterion of similarity to a self–adjoint operator immediately follows from
Theorem 3.1.

Theorem 3.2. Let |b12|+|b21| 6= 0. Then the operator AB is similar to a self–adjoint
one iff the functions ϕ+

B and ϕ+
B∗ do not vanish in C+.

Proof. By Lemma 2.1.(iii), σ(AB) = R iff the functions ϕ+
B and ϕ+

B∗ have no zeroes
in C+. Combining this fact with Theorem 3.1, we get Theorem 3.2. �

To prove the main theorem we recall the following Lemma.

Lemma 3.1. If an operator T is similar to a normal one, then the inequality

‖(T − λI)−1‖ ≤ C

dist(λ, σ(T ))
(3.5)

holds with some constant C > 0.
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3.2. Some estimates

We start with the following lemma.

Lemma 3.2. Let |b12| + |b21| 6= 0. Suppose there exists λ0 ∈ R ∪ {∞} such that
ϕ+

B(λ0) = 0 or ϕ+
B∗(λ0) = 0. Then the operator AB of the form (2.13) is not

similar to a normal operator.

Proof. Without loss of generality suppose that b21 6= 0 and ϕ+
B(λ0) = 0 for some

λ0 ∈ R.
It is obvious that for λ ∈ C \ R

sup
‖f‖≤1

|y+(f, λ)|2 = sup
‖f‖≤1

∣∣∣∣∣
∫

R+

f(t)e−
√
−λtdt

∣∣∣∣∣
2

=

= ‖e−
√
−λxχ+(x)‖2L2 =

1
|2 Re

√
−λ|

=
1

|2 Im
√

λ|
. (3.6)

Further, we set f+(·) := f(·)χ+(·), f ∈ L2(R). By (2.19), we have∥∥(AB − λI)−1f+ − (A0 − λI)−1f+

∥∥2

L2 =

=

∥∥∥∥∥e−
√
−λx · χ+(x)
ϕ+

B(λ)

(
b22 +

1√
λ

)
y+(f+, λ)

∥∥∥∥∥
2

L2

+

+ |b21| ·

∥∥∥∥∥e
√

λx · χ−(x)√
λ · ϕ+

B(λ)
· y+(f+, λ)

∥∥∥∥∥
2

L2

,

λ ∈ ρ(AB) ∩ C+. (3.7)

Combining (3.6) and (3.7), one obtains

∥∥(AB − λI)−1 − (A0 − λI)−1
∥∥2

L2 ≥

∣∣∣∣∣
(

b22 +
1√
λ

)
1

2ϕ+
B(λ) · Im

√
λ

∣∣∣∣∣
2

+

+

∣∣∣∣∣ b21

4
√

λ · ϕ+
B(λ)

∣∣∣∣∣
2

· 1
|Re

√
λ · Im

√
λ|

. (3.8)

Now if we recall Lemma 2.1, we obtain that dist(λ, σ(AB)) = | Im λ| in some
neighborhood of λ0. Therefore, for sufficiently small ε and λ = λ0 + iε

dist(λ, σ(AB))2 ·
∥∥(AB − λI)−1 − (A0 − λI)−1

∥∥2

L2 ≥

≥

∣∣∣∣∣ b21 · Im λ

4
√

λ · ϕ+
B(λ)

∣∣∣∣∣
2

· 1
|Re

√
λ · Im

√
λ|
≥ C1 ·

1
| Im λ|

. (3.9)

Then the left part of inequality (3.9) is unbounded in the neighborhood of λ0. Note
that A0 is a self–adjoint operator. Hence inequality (3.5) is valid for A0. Therefore,
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the function

dist(λ, σ(AB)) ·
∥∥(AB − λI)−1

∥∥
L2 (3.10)

is unbounded in the neighborhood of λ0. By Lemma 3.1, the operator AB is not
similar to a normal operator.

If ϕ+
B(∞) = 0, then formula (3.4) implies ϕ+

B(λ) = b11/
√

λ for λ ∈ C+. Hence
for ε large enough

dist(iε, σ(AB))2 ·
∥∥(AB − iεI)−1 − (A0 − iεI)−1

∥∥2

L2 ≥

≥ |b21|
4|b11|

· ε2

|Re
√

iε · Im
√

iε|
= C2ε . (3.11)

Since the right part of (3.11) is unbounded in C+, we see that AB is not similar
to a normal operator. �

Lemma 3.3. Let |b12| + |b21| 6= 0. Suppose that the function ϕ+
B has a zero of

algebraic multiplicity 2 in C+. Then AB is not similar to a normal operator.

Proof. Let b21 6= 0 (the case b12 6= 0 can be considered in the same way). Suppose
λ0 ∈ C+ is a zero of multiplicity 2 of ϕ+

B(·). By (3.8), we have for λ ∈ ρ(AB)∩C+

∥∥(AB − λI)−1 − (A0 − λI)−1
∥∥

L2 ≥

∣∣∣∣∣ b21

4
√

λ · ϕ+
B(λ)

∣∣∣∣∣ · 1
|Re

√
λ · Im

√
λ|1/2

. (3.12)

Since λ0 ∈ ρ(A0), we see that (3.12) implies∥∥(AB − λI)−1
∥∥

L2 ≥
Cλ0

|ϕ+
B(λ)|

, Cλ0 = const > 0, (3.13)

in some neighborhood of λ0. Therefore λ0 is a pole of multiplicity 2 of the resolvent
(AB − λI)−1. Consequently, the operator AB is not similar to a normal one. �

We also need the following estimates.

Lemma 3.4. Let λ = µ + iε, (ε > 0). Let y±(f, λ) be of the form (2.18). Then the
following inequalities

ε

+∞∫
−∞

∥∥∥∥y±(f, λ)√
λ

· e−
√
−λxχ+(x)

∥∥∥∥2

L2

dµ ≤ 2π · C1‖f‖2L2 , (3.14)

ε

+∞∫
−∞

∥∥∥∥y±(f, λ)√
λ

· e
√

λxχ−(x)
∥∥∥∥2

L2

dµ ≤ 2π · C2‖f‖2L2 (3.15)

are valid for all f ∈ L2(R) with constants C1, C2 independent of ε and f .
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Proof. Let us prove the inequality (3.14) for y−(f, λ).
Put f−(·) := f(·)χ−(·), f ∈ L2(R). Denote by F (z) the Fourier transform of

f−,

F (z) :=
1√
2π

+∞∫
−∞

f−(t)e−iztdt, z ∈ C+. (3.16)

Note that F (·) ∈ H2(C+) and ‖F‖H2 = ‖f−‖L2 ≤ ‖f‖L2 . Further, we obtain

+∞∫
−∞

∥∥∥∥y−(f, λ)√
λ

· e−
√
−λxχ+(x)

∥∥∥∥2

L2

dµ = 2π

+∞∫
−∞

1
|λ|
|F (i

√
λ)|2‖e−

√
−λx‖2L2dµ =

= 2π

+∞∫
−∞

1
2|
√

λ Im
√

λ|

∣∣∣F (i
√

λ)
∣∣∣2 dµ

2
√
|λ|

≤

≤ 2π

iε+∞∫
iε−∞

1
2| Im

√
λ Re

√
λ|

∣∣∣F (i
√

λ)
∣∣∣2 |d√λ| =

= 2π

iε+∞∫
iε−∞

1
Im λ

∣∣∣F (i
√

λ)
∣∣∣2 |d√λ| = 2π

ε

iε+∞∫
iε−∞

∣∣∣F (i
√

λ)
∣∣∣2 |d√λ|. (3.17)

Hence we find the estimate

ε

+∞∫
−∞

∥∥∥∥y−(f, λ)√
λ

· e−
√
−λxχ+(x)

∥∥∥∥2

L2

dµ ≤ 2π

iε+∞∫
iε−∞

∣∣∣F (i
√

λ)
∣∣∣2 |d√λ|. (3.18)

Finally, let us remark that |d
√

λ| is the Carleson measure for all ε > 0 (see [17]). It
is easy to see that the Carleson norms of these measures are uniformly bounded.
Then, by the Carleson embedding theorem (see [17]), there exists C1 > 0 such
that for all ε > 0 the inequality

iε+∞∫
iε−∞

∣∣∣F (i
√

λ)
∣∣∣2 |d√λ| ≤ C1 ‖F‖2H2 = C1‖f−‖L2 ≤ C1‖f‖L2 (3.19)

holds. Combining (3.18) and (3.19), one gets (3.14).
Other inequalities can be obtained analogously. �

3.3. Proof of Theorem 3.1

3.3.1. Necessity. Follows immediately from Lemmas 3.2 and 3.3.



14 I. M. Karabash and A. S. Kostenko

3.3.2. Sufficiency. a) Suppose that conditions (i) and (ii) of Theorem 3.1 hold.
Suppose also that λ1 ∈ C+ is a unique zero of ϕ+

B(·) and ϕ+
B∗(·) does not vanish

in C+. Then, by Lemma 2.1, σ(AB) = R ∪ {λ1}.
Denote by B(λ1) a closed neighborhood of λ1 such that B(λ1) ⊂ C+. Let us

consider the Riesz projection

P1 :=
1

2πi

∫
∂B(λ1)

(AB − λ)−1dλ , (3.20)

where ∂B(λ1) is the boundary of B(λ1).
Then (see [25]) P1 ∈ [L2(R)] and ABP1 = P1AB . Since A0 is a self-adjoint

operator, it follows that
1

2πi

∫
∂B(λ1)

(
(AB − λ)−1 − (A0 − λ)−1

)
dλ =

1
2πi

∫
∂B(λ1)

(AB − λ)−1dλ. (3.21)

It is not hard to show that P1 is a one-dimensional operator in L2(R). Actually,
we set mλ1 := lim

λ→λ1

λ−λ1
ϕ(λ) . Using (3.21) and (2.19), one gets

(P1f)(x)
mλ1

= e−
√
−λ1x · χ+(x) ·

((
b22 +

1√
λ1

)
y+(f, λ1)−

b12√
λ1

· y−(f, λ1)
)

+

+
e
√

λ1x · χ−(x)√
λ1

(
b11 +

√
−λ1√

λ1

· y−(f, λ1)− b21 · y+(f, λ1)
)

, f ∈ L2(R).

(3.22)

Let us write (3.22) in the following form

(P1f)(x)
mλ1

= y+(f, λ1) ·

[
e−
√
−λ1xχ+(x) ·

(
b22 +

1√
λ1

)
− b21

e
√

λ1x · χ−(x)√
λ1

]

+
y−(f, λ1)√

λ1

·

[
e−
√
−λ1xχ+(x) · (−b12) +

e
√

λ1x · χ−(x)√
λ1

·
(
b11 +

√
−λ1

)]
.

(3.23)

Note that

det
(

(b22 + 1√
λ1

) −b12

−b21 (b11 − i
√

λ1)

)
= det(B −M(λ1)) = ϕB(λ1) = 0. (3.24)

Hence P1 is a one-dimensional operator.
b) By step (a), the space H = L2(R) can be decomposed as (see [25])

H = H0 u H1, Hj := PjH, j ∈ {0, 1}, P0 := I − P1. (3.25)

Moreover, ABPj = PjAB , j ∈ {0, 1}, and the operator AB admits the following
decomposition

AB = A0
B u A1

B , Aj
B := PjABPj , j ∈ {0, 1}. (3.26)

We also have σ(A1
B) = {λ1} and σ(A0

B) = R.
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Let us show that the inequality

sup
ε>0

+∞∫
−∞

ε
∥∥∥RA0

B
(µ + iε) f

∥∥∥2

dµ ≤ C ‖f‖2 , f ∈ H0, (3.27)

holds with some constant C > 0.
Since ϕ+

B(·) does not vanish in R ∪ {∞}, we see that Lemma 3.4 and (2.19)
imply

sup
ε>0

∫
µ∈R

µ+iε6∈B(λ1)

‖RAB
(µ + iε)f‖2dµ ≤ C1‖f‖2, f ∈ L2(R) . (3.28)

Therefore

sup
ε>0

∫
µ∈R

µ+iε6∈B(λ1)

‖RA0
B
(µ + iε)f‖2dµ ≤ C1‖f‖2, f ∈ H0. (3.29)

Further, let us recall that λ1 ∈ ρ(A0
B). It means that the operator-function RA0

B
(λ)

is bounded on B(λ1). If we combine this with (3.29), we get (3.27).
Since σ(A0

B) = R and ϕ+
B∗(·) have no zeroes in C+, we can obtain in the

same way the estimate

sup
ε>0

∫ +∞

−∞
‖R(A0

B)∗(µ + iε)f‖2dµ ≤ C∗‖f‖2, f ∈ H0, C∗ = const > 0.

(3.30)
Hence, by Theorem 1.2, the operator A0

B is similar to a self-adjoint operator.
Moreover, A1

B is a one-dimensional operator. Thus the operator AB is similar to
a normal one.

c) General case. Suppose that conditions (i) and (ii) hold, i.e., ϕ+
B(·) and

ϕ+
B∗(·) do not vanish on R∪{∞} and have only simple zeros in C+. Let us denote

by n(ϕ+
B) the number of zeroes of ϕ+

B(·) in C+. Then n(AB) := n(ϕ+
B)+n(ϕ+

B∗) is
the number of eigenvalues of AB , σp(AB) = {λi : i = 1, . . . , n(AB)}, (σp(AB) = ∅
if n(AB) = 0).

By (3.4), the function ϕ+
B(·) has at most two zeroes in C+. Hence n(AB) ≤ 4.

It can be shown in the same way as in step (b) that exists a decomposition

L2(R) = H0 u H1 u ... u Hn(AB),

AB = A0
B u A1

B u ... u A
n(AB)
B . (3.31)

Here A0
B is similar to a self–adjoint operator and Ai

B are one-dimensional opera-
tors.

Thus, AB is similar to a normal operator. This completes the proof.
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4. Other boundary conditions

4.1. The case ∆2 6= 0
The following theorem is an obvious corollary of Theorem 2.1.

Theorem 4.1. (i) The triplet Π2 = {C2,Γ0,Γ1}, where Γj : W 2
2 (R\{0}) → C2, j ∈

{0, 1},

Γ0f =
(
−f ′(+0)
f(−0)

)
, Γ1f =

(
f(+0)
f ′(−0)

)
, (4.1)

is a boundary triplet for A∗.
(ii) The corresponding Weyl function M(·) is

M(λ) = M2(λ) :=
(

1/
√
−λ 0

0
√

λ

)
, λ ∈ C \ R. (4.2)

(iii) The corresponding γ–field γ(λ) : C2 → Nλ is

γ(λ)
(

c+

c−

)
:= c+

1√
−λ

· e−
√
−λxχ+(x) + c− · e

√
λxχ−(x), c± ∈ C. (4.3)

If ∆2 6= 0 then the boundary conditions (2.8) take the form{
f(+0) = −b11f

′(+0) + b12f(−0)
f ′(−0) = −b21f

′(+0) + b22f(−0) . (4.4)

Further, by Definition 1.5, we get

A(aij) = AB = A∗| ker(Γ1 −BΓ0), B =
(

b11 b12

b21 b22

)
∈ C2×2. (4.5)

As before, denote by ϕB(·) the function as in (2.14) with M(·) as in (4.2).
Combining Proposition 1.2 and Theorem 1.2, one obtains

Lemma 4.1. If AB is the operator (4.5) and |b12|+ |b21| 6= 0 then:
(i) σc(AB) = R, σr(AB) = ∅;
(ii) σp(AB) = {λ ∈ C \ R : ϕB(λ) = 0} = {λ ∈ C+ : ϕB(λ) = 0} ∪ {λ ∈ C− :

ϕB∗(λ) = 0}.
(iii) The Krein formula has the form(

(AB − λ)−1f − (A0 − λ)−1f
)
(x) =

=
e−
√
−λx · χ+(x)

ϕB(λ) ·
√
−λ

(
b22 −

√
λ√

−λ
· y+(f, λ)− b12 · y−(f, λ)

)
+

+
e
√

λx · χ−(x)
ϕB(λ)

(
− b21√

−λ
· y+(f, λ) +

(
b11 −

1√
−λ

)
· y−(f, λ)

)
,

f ∈ L2(R), (4.6)

where A0 = A∗| ker Γ0, λ ∈ ρ(AB) ∩ ρ(A0), and y±(f, λ) are defined by (2.18).



Differential operators with indefinite weights and a point interaction 17

4.2. The case ∆3 6= 0

Let ∆3 6= 0. In this case we write the boundary conditions (2.8) in the following
form {

f ′(+0) = b11f(+0) + b12f(−0)
f ′(−0) = b21f(+0) + b22f(−0). (4.7)

Let B =
(

b11 b12

b21 b22

)
and

AB := A∗|dom(AB), dom(AB) = {f ∈ W 2
2 (R\{0}) : f satisfies (4.7)}. (4.8)

Theorem 4.2. (i) The triplet Π3 = {C2,Γ0,Γ1}, where Γj : W 2
2 (R\{0}) → C2, j ∈

{0, 1},

Γ0f =
(

f(+0)
f(−0)

)
, Γ1f =

(
f ′(+0)
f ′(−0)

)
, (4.9)

is a boundary triplet for A∗.
(ii) The corresponding Weyl function M(·) is

M(λ) = M3(λ) :=
(
−
√
−λ 0

0
√

λ

)
, λ ∈ C \ R. (4.10)

(iii) The corresponding γ–field γ(λ) : C2 → Nλ is

γ(λ)
(

c+

c−

)
:= c+ · e−

√
−λxχ+(x) + c− · e

√
λxχ−(x), c± ∈ C. (4.11)

Therefore, AB of the form (4.8) is an almost solvable extension of A and
AB = A∗| ker(Γ1 −BΓ0), where Γi, i ∈ {0, 1}, are defined by (4.9).

Lemma 4.2. Let the function ϕB(·) be of the form (2.14) with M(·) defined by
(4.10); let the operator AB is given by (4.8) and |b12|+ |b21| 6= 0. Then:

(i) σc(AB) = R, σr(AB) = ∅;
(ii) σp(AB) = {λ ∈ C \ R : ϕB(λ) = 0} = {λ ∈ C+ : ϕB(λ) = 0} ∪ {λ ∈ C− :

ϕB∗(λ) = 0}.
(iii) The Krein formula has the form(

(AB − λ)−1f − (A0 − λ)−1f
)
(x) =

=
e−
√
−λx · χ+(x)
ϕB(λ)

(
(b22 −

√
λ) · y+(f, λ)− b12 · y−(f, λ)

)
+

+
e
√

λx · χ−(x)
ϕB(λ)

(
−b21 · y+(f, λ) + (b11 +

√
−λ) · y−(f, λ)

)
, f ∈ L2(R),

(4.12)

where A0 = A∗| ker Γ0, λ ∈ ρ(AB) ∩ ρ(A0), and y±(f, λ) are given by (2.18).
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4.3. The case ∆4 6= 0
If ∆4 6= 0, then boundary conditions (2.8) take the form{

−f(+0) = b11f
′(+0) + b12f

′(−0)
−f(−0) = b21f

′(+0) + b22f
′(−0). (4.13)

For B =
(

b11 b12

b21 b22

)
we set

AB := A∗|dom(AB),

dom(AB) = {f ∈ W 2
2 (R \ {0}) : f satisfies (4.13)}. (4.14)

Theorem 4.3. (i) The triplet Π4 = {C2,Γ0,Γ1}, where Γj : W 2
2 (R\{0}) → C2, j ∈

{0, 1},

Γ0f =
(

f ′(+0)
f ′(−0)

)
, Γ1f =

(
−f(+0)
−f(−0)

)
, (4.15)

is a boundary triplet for A∗.
(ii) The corresponding Weyl function M(·) is

M(λ) = M4(λ) :=
(

1/
√
−λ 0

0 −1/
√

λ

)
, λ ∈ C \ R. (4.16)

(iii) The corresponding γ–field γ(λ) : C2 → Nλ is

γ(λ)
(

c+

c−

)
:= − c+√

−λ
· e−

√
−λxχ+(x) +

c−√
λ
· e
√

λxχ−(x), c± ∈ C. (4.17)

Therefore, AB as in (4.14) is an almost solvable extension of A and AB =
A∗| ker(Γ1 −BΓ0), where Γj , j ∈ {0, 1} are given by (4.15).

Lemma 4.3. Suppose the function ϕB(·) is given by (2.14) with M(·) as in (4.16).
If the operator AB is given by (4.14) and |b12|+ |b21| 6= 0 then:

(i) σc(AB) = R, σr(AB) = ∅;
(ii) σp(AB) = {λ ∈ C \ R : ϕB(λ) = 0} = {λ ∈ C+ : ϕB(λ) = 0} ∪ {λ ∈ C− :

ϕB∗(λ) = 0}.
(iii) The Krein formula has the form(

(AB − λ)−1f − (A0 − λ)−1f
)
(x) =

=
e−
√
−λx · χ+(x)

ϕB(λ) ·
√
−λ

(
(b22 + 1/

√
λ) · y+(f, λ)√

−λ
+ b12 ·

y−(f, λ)√
λ

)
+

+
e
√

λx · χ−(x)
ϕB(λ) ·

√
λ

(
b21 ·

y+(f, λ)√
−λ

+ (b11 − 1/
√
−λ) · y−(f, λ)√

λ

)
, f ∈ L2(R),

(4.18)

where A0 = A∗| ker Γ0, λ ∈ ρ(AB) ∩ ρ(A0), and y±(f, λ) are given by (2.18).
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4.4. The similarity criterion

Arguing as above, we see that for the cases considered in subsections 4.1-4.3 ana-
logues of Theorems 3.1 and 3.2 hold.

Theorem 4.4. Theorems 3.1 and 3.2 are valid for the extensions AB with boundary
conditions (4.4), (4.7) or (4.13) if the function M(·) is replaced by (4.2), (4.10)
or (4.16), respectively.

5. On similarity of (sgn x)
(
− d2

dx2 + cδ
)

and (sgn x)
(
− d2

dx2 + cδ′
)

to

normal operators

5.1. Let us illustrate the previous results by several examples. We start with
the operator Ã = −(sgn x) d2

dx2 , see (0.3). It is obvious that Ã = AB , where AB is

an almost solvable extension of the form (2.13) with B =
(

0 1
−1 0

)
. It follows

from (3.4) that in this case

ϕ+
B(λ) = ϕ+

B∗(λ) ≡ 1− i, λ ∈ C+.

Hence, by Theorem 3.2, one obtains the result of [7].

Theorem 5.1 ([7]). The operator Ã = −(sgn x) d2

dx2 is similar to a self–adjoint
operator.

5.2. Let δ be the Dirac delta. Let us introduce the following differential
expression

− d2

dx2
+ cδ, c ∈ C \ {0}. (5.1)

Here δ formally represents a contact interaction at zero if c ∈ R.
In L2(R), expression (5.1) generates the differential operator Lcδ defined by

dom(Lcδ) = {f ∈ W 2
2 (R \ {0}) : f(+0) = f(−0), f ′(+0)− f ′(−0) = cf(−0)},

Lcδ := − d2

dx2
(5.2)

(see for example [2, 35]). We put Acδ := JLcδ, where (Jf)(x) = (sgnx)f(x), i.e.,
the operator Acδ is defined in L2(R) by the differential expression

(sgn x)
(
− d2

dx2
+ cδ

)
, c ∈ C \ {0}. (5.3)

It is clear that the operator Acδ is an extension of the operator A of the form (0.1).
Moreover, Acδ = AB where AB is given by (2.13) and

B = Bc :=
(

c 1
−1 0

)
. (5.4)
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Theorem 5.2. Let c 6= 0.
(i) The operator Acδ is similar to a normal one if and only if Re c 6= −| Im c|.
(ii) Acδ is similar to a self–adjoint operator if and only if Re c > −| Im c|.

Proof. Let B be given by (5.4). By (3.4), one gets

ϕ+
B(λ) = 1− i +

c√
λ

, ϕ+
B∗(λ) = 1− i +

c√
λ

, λ ∈ C+ \ {0}. (5.5)

Note that ϕ+
B(·) or ϕ+

B∗(·) have a real zero iff Re(c) = −| Im(c)|. Furthermore,
ϕ+

B(·) and ϕ+
B∗(·) do not vanish in C+ iff Re(c) > −| Im c|. Hence the statements

of Theorem 5.2 obviously follow from Theorems 3.1 and 3.2. �

5.3. Let us consider the extension AB̃ of the form (2.13) with

B̃ = B̃c =
(

0 1
−1 c

)
, c 6= 0.

This is a so-called ”operator with δ′–interaction” (see [2]). The formal differential
expression corresponding to AB̃ is

(sgn x)
(
− d2

dx2
+ cδ′

)
, c ∈ C \ {0}. (5.6)

Therefore we will denote the operator AB̃ by Acδ′ .

Theorem 5.3. Let c 6= 0.
(i) The operator Acδ′ is similar to a normal one if and only if Re c 6= −| Im c|.
(ii) Acδ′ is similar to a self–adjoint operator if and only if Re c > −| Im c|.

Proof. So, by (3.4), we have

ϕ+
cδ′(λ) = 1− i− ic

√
λ, ϕ+

cδ′(λ) = 1− i− ic
√

λ, λ ∈ C+. (5.7)

These functions have a real zero iff Re c = −| Im c|, have no zeros in C+ iff Re c >
−| Im c|. Hence the statements of Theorem 5.3 follow from Theorems 3.1 and 3.2.

�

Remark 5.1. Let L̂ be a self-adjoint extension of the symmetric operator

(Lf)(x) := −f ′′(x), dom(L) = {f ∈ W 2
2 (R) : f(0) = f ′(0) = 0}. (5.8)

Assume that the boundary conditions at 0 associated with the extension L̂ are
nonseparate, i.e., the operator L̂ does not admit the following decomposition L̂+⊕
L̂−, where L̂± := L̂ |(dom(L̂)∩L2(R±)). Then L̂ can be considered as an operator
with a singular interaction (see [27] for the details). Using the arguments of this
section, one can describe the main spectral properties of the corresponding J-self-
adjoint operator Â := JL̂.
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