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Abstract. The well known condition of compactness entered by R. Palais and S. Smale —
condition (C) — can be proved traditionally in rare cases, especially if it is considered the
problem about critical points for functional f(u), u ∈ E on the surface {u ∈ E : F (u) = 0}
with essentially nonlinear infinite dimensional F : E → E1. However it is possible to
obtain the proof by consideration of special compactifications for bounded sets from E,
and subsequent testing that the limit points of any pseudocritical sequence lie not in
remainder above E, but in most E. Main application is a problem for spherical fields in
the bounded domains.

0. Introduction. In some applications of Morse or Lusternik–Schnierelmann theories
to the critical points for a functional f(u), u ∈ E (E is a Banach space) with con-
straint {F = 0} ≡ {u ∈ E : F (u) = 0, F : E → E1} one of the main technical
difficulties is checkup for Palais–Smale compactness condition, named condition (C).
Namely, whether will be some bounded sequence {ui} have a limit point, if values of
the Euler–Lagrange operator tend to zero on {ui}:

f ′(ui) + F
′*(ui) ri → 0, (1)

ri ∈ E*
1 are Lagrange multipliers. (It is a highly nontrivial problem — is Lagrange

multiplier in the limiting equation at f ′(u) equal to zero, provided that regularity, i.e.,
ImF ′(u) = E1, is absence. But its discussion leaves for a framework of the article.)

In case of finite dimensional constraints (E1 = Rn) one usually acting (after [PS],
[Brow]) so: if ui, uj ∈ {ui} then

〈f ′(ui)− f ′(uj), ui − uj〉+ 〈ri, F
′(ui)(ui − uj)〉

− 〈rj , F
′(uj)(ui − uj)〉 −→ 0.

In the natural conditions of regularity and compactness F ′ it is possible to allocate
subsequence on which 〈ri, F

′(ui)(ui − uj)〉 → 0, then to make use, for example, of
uniform monotonicity f ′.

With some shifts this proof can be extended to case dim E1 = ∞, if F is the sum of
linear surjection and compact nonlinear operator [Suv].
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However for essentially nonlinear F , without regularity, and for infinite dimensional
E1, such reasons are not proper. For their proof the compactness of F ′ and limitation of
{ri} would be required. The choice of the space E1 is largely arbitrary, and manipulating
them, it is possible to achieve or first or second, but not first and second together: they
are the inconsistent requirements in an infinite dimensional situation.

Nevertheless the proof can be received in the essentially other basis under the natural
assumptions about (f, F, E) (statement in item 1). Namely, it is entered some extension
γE of the space E which is for bounded closed sets their compactification, narrower,
than Stone–Čech’s (see item 2); this compactification is constructing on some algebra
U(E) ⊂ C(E).

There is the limit point — point measure µ0, limiting for {µi} = {γui}. Thus
appears, that if µ0 belongs to remainder (γE \ γE), then it does not lie in a centre of
convolution algebra of measures (see item 3), a little that non-commutation µ0 with
some measure µ is displayed just on function f , i.e. 〈[µ0, µ], f〉U 6= 0.

One designation 〈, 〉 is used for all pairs of the dual spaces with the space in the
bottom index, when there is danger of mess.

For a strongly continuous F the movement in a direction of commutators does not
change values of natural extinsion F̂ of the operator F in U∗, i.e., does not remove for
limits of constraint. Let us now have succeeded ”to prolong” the smallness of values
for a left-hand (1) uniformly to U∗, we have obtained there certain analogue of the
higher smallness variation for functional near a critical point. Then the assumption
for µ0 belong to remainder which means linearity of variation along an appropriate
commutator, results in the contradiction among powers of slowness.

So µ0 is a measure, concentrated in usual point u0 ∈ E. After that the fact u0 is the
limit point of a sequence {ui} — is trivial (see item 4).

In item 5 is shortly characterized as well as where properties of f, F, E are used. In
item 6 is shown important and natural application: chiral fields in the bounded domains
( similar problems see in [DNF],[Har],[Sch]). Functional

f(u) =
∫

Ω

|∇u|2 dx

(possibly, more general), F (u) ≡ ∑
u2

i (x)− 1, Ω ∈ Rn, u = {u1, . . . , um}; equation (1)
turn into

∆ui + (
∑

i

|∇ui|2)ui = 0; (2)

boundary conditions is natural.

1. Statement of a problem. Let E and E1 be the real uniformly convex Banach
spaces. Functional f and operator F : E → E1 are Frechét boundedly uniformly
differentiable, i.e., there are uniformly continuous derivatives and uniformly small Taylor
remainders on bounded sets; continuous modules and upper bounds for remainders
depend on the norm.



Functional f is even, convex and coercive; operator F is strongly continuous, i.e., F
transforms every weak convergent sequence into strongly convergent.

The goal of this article is to obtain the following:

Theorem. Let {ui} ⊂ {F = 0} from (1) is the bounded sequence. Then it has a limit
point.

2. Expansion γE. We introduce countable-normed algebra of functions U = U(E)
consisting of unbounded (in general) functions, each of which is uniformly continuous
on any bounded set: |ϕ(u + h) − ϕ(u)| 6 ω(‖h‖, ϕ, ‖u‖) with usual properties for a
module ω. The system of the seminorms are pn(u) = sup{|ϕ(u)|, ‖u‖ 6 n}, n ∈ Z.
Dual U∗ can be interpreted as some space of measures on E (regular, finite, finitely
additive, not necessarily positive [FT]) and γ : E → U∗ is a calculation mapping: if
µu = γu, u ∈ E, then ∀ϕ ∈ U 〈µu, ϕ〉 = ϕ(u). The completion γE is constructed by
w∗-topology for the U∗ (i.e., by weak dual).

Proposition 1. All measure supports are bounded.

(It is like to appropriate Hewitt’s result [FT].)

Corollary 1. U∗ is an algebra over convolution 〈µ1 ∗ µ2, ϕ〉 = 〈µy
1, 〈µx

2 , ϕ(x + y)〉〉.
This algebra is noncommutative - see item 3.

If the map T : E → E is a boundedly uniformly continuous then there is some linear
operator T : U(E) −→ U(E) corresponding to T , namely, (T ϕ)(u) = ϕ(Tu). The last,
in turn, have been corresponding to linear T̂ = T ∗ : U∗(E) −→ U∗(E). Similarly, with
use U(E), U(E1) we receive for F : E → E1 the linear operator F̂ : U∗(E) −→ U∗(E1).
Truly linear T at such correspondence acquire the next additional property:

Proposition 2. If T : E → E is a continuous linear operator then T̂ is a homomor-
phism, i.e., T̂ (µ1 ∗ µ2) = (T̂ µ1) ∗ (T̂ µ2).

We shall note one fact, describing essential difference of uniform compactification
for bounded closed sets from their Stone–Čech compactification: it is possible to enter
symmetric specifying the same topology in γE:

ρ(x, y) = inf
uα→x, vα→y

lim
α
‖uα − vα‖.

3. Main lemmas.

Lemma 1. If the point measure µ1 is concentrated in a point of remainder then µ1 does
not belong to a centre of algebra U∗, i.e., ∃(r ∈ U(E), µ2 ∈ U∗) so that 〈[µ2, µ1], r〉 6= 0.

The following lemma formally exceed first, but first is used in the proof the second;
µ1 is the same measure.



Lemma 2. There is a family of measures µε ∈ U∗ such that for functional f (from item
1)

(a) 〈[µ1, µε], f〉 = α(ε) 6= 0;
(b) µε are the w∗-limits of convex combinations of point measures from compactifi-

cations for ε-neighborhoods of a zero in E (designation γS(Θ, ε));
(c) |α(ε)| > c ε, c > 0.

Lemma 3. For all µ ∈ U∗ it is truly F̂ [µ1, µ] = 0.

With regard to the perturbations by commutators do not remove for limits of ex-
tended constraint in U∗, we have

Corollary 2. If µ1 is a limit point of set {γui}, where {ui} are from the theorem, if
νε are point measures from γS(Θ, ε), then | 〈[µ1, νε], f〉 | = o(ε).

4. About the theorem. If the limit point µ1 lies in remainder, both powers of slow-
ness for 〈[µ1, µε], f〉 from a lemma 2 and corollary 2 come to contradiction (a pass from
point measures to their convex combinations and to the consequent limit is possible).
Hence µ1 is a measure, concentrated in some usual point w ∈ E.

As all linear functions and norm converge on appropriate subdirectedness uα → w in
γE (however it is possible to manage by sequences, because of existence of symmetric )
so w is the limit point for {ui} in the norm E.

5. About use of properties f, F, E. The completeness of E exploits in a lemma 1:
if the point measure from remainder belongs to the centre then one succeeds in finding
in γE the set passing through it and γΘ, on which it is possible to introduce a linear
structure R1 compatible with a linear structure of E. Thus E is embedded in some
linear E0 as proper dense subspace and with identical topology. It is impossible for
complete E.

The uniform convexity of E exploits, in particular, in item 4.
Evenness and coerciveness for f are used in the proof of the fact: noncommutativity

realization just on f ( lemma 2.a), and the convexity is required in the proof of estimates
(lemma 2.b,c): the standard inequalities connected with convexity, in correspondence
u+v À µu ∗µv give set enough of inequalities to prove it in a cone of positive measures.

The strong continuity for F in a lemma 3 permits to approximate (in any bounded
set) an arbitrary function of a kind h(F (u)), where h ∈ U(E1), by elements of algebra
WC(E) generated by unit and linear functionals: type

a0 + a1 〈l1, u〉+ a2 〈l2, u〉 〈l3, u〉+ . . . .

After it the proposition 2 is used.
Uniformity of f ′, F ′, uniformity of U(E) are required in corollary 2 in order to ”pro-

long” (1) into remainder.



6. Example. Let: E = W 1
2,m(Ω) be the space of vectors u = (u1, . . . , um); the domain

Ω ⊂ Rn be bounded with regular ∂Ω; the space E1, for example, be Ln−1
n−2 ,1. Then the

embedding E ↪→ L 2(n−1)
n−2 ,m

is compact. If F ≡ ∑
u2

i (x) − 1 then F : L 2(n−1)
n−2 ,m

−→
Ln−1

n−2 ,1 is boundedly uniformly continuous and has required properties for derivative,
and at the expense of compactness of a specified embedding F : E → E1 is strongly
continuous.

The typical functional (Euclidian action) is

f(u) =
∫

Ω

|∇u|2 dx,

and we shall here add it by term

f(u) =
∫

Ω

(
|∇u|2 +

∑
u2

i

)
dx,

that does not change a constrained {F = 0} variational problem. The required proper-
ties f are trivial.

It is also clear, that it is possible to take more general

f(u) =
∫

Ω

Φ(x,u,∇u) dx

with E = W 1
p,m, p > 2, smooth Φ and appropriate its behavior with respect to u,∇u.

The conclusion of a form for multiplier r from (1), reducing limiting (1) to (2) is
simple (for smooth solutions and a priori nonzero Lagrange multiplier at f ′(u)).

The boundary conditions is natural (Neumann).
A boundedness for {ui} probably is essential to not simple connected constraints

in Rm: the counterexample from [Har], though it does not concern to the Neumann
problem, but gives enough basis for such assumption.
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