УДК 531.38, 531.36

©2003. Б.И. Коносевич

ИССЛЕДОВАНИЕ ОСНОВНОГО УСЛОВИЯ УСТОЙЧИВОСТИ СТАЦИОНАРНЫХ ДВИЖЕНИЙ ГИРОСКОПА В КАРДАНОВОМ ПОДВЕСЕ, СНАБЖЕННОГО ЭЛЕКТРОДВИГАТЕЛЕМ

Изучается гироскоп в кардановом подвесе, установленный на неподвижном основании в поле силы тяжести, имеющий вертикальную наружную ось подвеса и снабженный электродвигателем. Для случая асинхронного электродвигателя на множестве стационарных движений гироскопа выделены устойчивые стационарные движения, а именно те, для которых выполняется достаточное условие устойчивости, следующее из анализа линеаризованных уравнений движения. Это условие появляется также при исследовании гироскопа в кардановом подвесе с синхронным электродвигателем как одно из двух условий устойчивости его стационарных движений.

Введение. Рассматривается тяжелый гироскоп в кардановом подвесе, установленный на неподвижном основании. Положение системы в каждый момент времени t определяют углы α, β, φ , где α – угол поворота наружной рамки подвеса относительно основания, β – угол поворота внутренней рамки относительно наружной, φ – угол поворота ротора относительно внутренней рамки. Трение на осях подвеса не учитывается. Предполагается, что либо наружная ось подвеса вертикальна, либо гироскоп является уравновешенным. Тогда уравнения движения гироскопа в кардановом подвесе допускают семейство решений

$$\dot{\alpha} = \Omega, \quad \beta = \beta_0, \quad \varphi = \omega t + \gamma_0,$$
(1)

соответствующих разным значениям β_0 . Здесь постоянная Ω сязана с β_0 и ω , причем $\Omega \neq 0$ для прецессии и $\Omega = 0$ для равномерного вращения.

В идеальном случае, когда трение на оси ротора также отсутствует, устойчивость движения (1) изучалась К. Магнусом [1], В.В. Румянцевым [2] и другими (см.[3]).

На практике быстровращающийся ротор гироскопа испытывает значительное тормозящее воздействие диссипативных сил. Поэтому внутренняя карданова "рамка"и ротор обычно образуют вместе электродвигатель, который поддерживает вращение ротора. В случае *асинхронного* электродвигателя алгебраическая сумма момента диссипативных сил относительно оси ротора и вращающего момента двигателя в линейном приближении принимается равной $L = -\lambda(\dot{\varphi} - \omega)$, а в случае *синхронного* двигателя $L = -\lambda_1(\varphi - \omega t - \gamma_0) - \lambda_2(\dot{\varphi} - \omega)$, где $\lambda, \lambda_1, \lambda_2 > 0, \omega \neq 0$ и γ_0 – постоянные (см. [4]).

Для гироскопа в кардановом подвесе с асинхронным электродвигателем устойчивость равномерных вращений по первому приближению изучалась в [5], а в [6] с помощью метода функций Ляпунова получено достаточное условие устойчивости равномерных вращений.

Чтобы учесть влияние разного рода погрешностей изготовления и сборки, в [7, 8] рассматривалась обобщенная механическая модель гироскопа в кардановом подвесе, когда динамически симметричный ротор заключен в карданов подвес, образованный двумя телами произвольной формы. В [8] на основе метода функций Ляпунова показано, что для асинхронных гироскопов большинства конструкций (в том числе и для гироскопа обычной конструкции) необходимое и достаточное условие устойчивости дви-

жения (1) состоит в том, что приведенная потенциальная энергия системы имеет в соответствующей стационарной точке минимум по β . Следовательно, наиболее простым и общим достаточным условием устойчивости движения (1) является положительность в стационарной точке второй производной по β от приведенной потенциальной энергии. Именно это условие появляется при исследовании устойчивости движения (1) на основе линеаризованных уравнений движения, а равенство нулю первой производной служит условием существования такого движения.

В [9] в рамках обобщенной механической модели изучается гироскоп в кардановом подвесе, снабженный синхронным электродвигателем. На основании исследования уравнений первого приближения установлено, что для устойчивости движения вида (1) достаточно выполнения отмеченного выше условия положительности второй производной по β от приведенной потенциальной энергии (основного условия устойчивости) и еще одного (дополнительного) условия.

Настоящая статья посвящена анализу основного условия устойчивости стационарных движений для обычной модели гироскопа в кардановом подвесе.

Приведенная потенциальная энергия для гироскопа с двигателем и идеального гироскопа выражаются разными формулами, так как в первом случае имеется одна циклическая координата (угол α), а во втором – две (углы α, φ). Поэтому условие положительности второй производной по β от приведенной потенциальной энергии, рассматриваемое ниже, отличается от аналогичного условия в [3].

1. Исходные соотношения. Пусть *С* – осевой момент инерции динамически симметричного ротора. Если пользоватся обобщенной механической моделью гироскопа в кардановом подвесе [7], то при вертикальной наружной оси подвеса величины *G*, *N*, *Q* в выражении

$$T = \frac{1}{2} (G\dot{\alpha}^2 + H\dot{\beta}^2 + C\dot{\varphi}^2 + 2N\dot{\alpha}\dot{\beta} + 2Q\dot{\alpha}\dot{\varphi} + 2R\dot{\beta}\dot{\varphi})$$

кинетической энергии системы и ее потенциальная энергия U являются функциями угла β и механических параметров системы, а H, R зависят только от механических параметров. Соответствующие выражения следуют из формул (6)-(15) статьи [7]. Случай, когда система статически уравновешена относительно осей подвеса, формально включается в случай вертикальной наружной оси подвеса при $U(\beta) \equiv \text{const. C}$ помощью введенных обозначений условие существования движения (1) выражается равенством

$$-\Omega\left[\frac{\Omega}{2}G'(\beta_0) + \omega Q'(\beta_0)\right] + U'(\beta_0) = 0, \qquad (2)$$

а основное условие устойчивости этого движения выражается неравенством (см. [8, 9])

$$\Omega^{2} \left[G''^{2}(\beta_{0}) - \frac{1}{2} G(\beta_{0}) G''(\beta_{0}) \right] + \omega \Omega \left[2G'(\beta_{0}) Q'(\beta_{0}) - G(\beta_{0}) Q''(\beta_{0}) \right] + \omega^{2} Q'^{2}(\beta_{0}) + G(\beta_{0}) U''(\beta_{0}) > 0.$$
(3)

Здесь и далее штрих означает дифференцирование по β .

Проанализируем соотношения (2), (3) для *обычной модели* гироскопа в кардановом подвесе. Выражения *G*, *H*, *N*, *Q*, *R*, *U* для этой модели можно получить из формул (6)-(15) статьи [7] или же воспользоваться готовыми формулами (см., например, [3, с. 83]). В результате будем иметь

$$G(\beta) = C_2 + B_1 + C + (C_1 + A - B_1 - C)\cos^2\beta, \quad H = A_1 + A, N(\beta) = 0, \quad Q(\beta) = C\sin\beta, \quad R = 0, \quad U(\beta) = mgs\sin\beta.$$
(4)

81

Б.И. Коносевич

Здесь C, A – осевой и экваториальный моменты инерции ротора относительно центра подвеса, A_1, B_1, C_1 – моменты инерции внутренней рамки относительно внутренней оси подвеса, нормали к плоскости внутренней рамки в ее центре и относительно оси ротора, C_2 – момент инерции наружной рамки относительно наружной оси подвеса. Далее, m – масса ротора, g – ускорение свободного падения, $s \ge 0$ – смещение центра масс ротора из центра подвеса вдоль оси ротора. Угол β отсчитывается таким образом, что $\beta = 0$ в положении, когда ось ротора ортогональна наружной оси подвеса.

Подставим выражения (4) в соотношения (2), (3). Полагая для краткости $I_0 = C_2 + B_1 + C$, $I = C_1 + A - B_1 - C$ и рассматривая далее нетривиальный случай, когда $I \neq 0$, введем следующие безразмерные величины

$$y = 2\Omega I/\omega C, \quad \varepsilon = 4mgsI/\omega^2 C^2, \quad \lambda = I_0/I.$$
 (5)

Тогда условие (2) существования стационарных движений (1) принимает вид

$$\cos\beta_0(y^2\sin\beta_0 - 2y + \varepsilon) = 0, \tag{6}$$

а основное условие устойчивости таких движений (3) преобразуется к неравенству

$$y^{2}[-2\cos^{4}\beta_{0} + (3+2\lambda)\cos^{2}\beta_{0} - \lambda] + +2y(\lambda - 3\cos^{2}\beta_{0}) + 4\cos^{2}\beta_{0} - \varepsilon(\lambda + \cos^{2}\beta_{0})\sin\beta > 0.$$
(7)

Величина y характеризует угловую скорость прецесии Ω , параметры ε и λ характеризуют смещение центра масс ротора s и распределение масс в системе. Из (5) следует, что при s > 0 знак ε равен знаку I. А так как $I_0 > 0$, то при $\varepsilon > 0$ будет $\lambda > 0$. Представив λ в виде $\lambda = -1 + (C_2 + C_1 + A)/I$, заключаем, что при $\varepsilon < 0$ будет $\lambda < -1$. В случае $\varepsilon = 0$, то есть при s = 0, величина I может иметь любой знак, и поэтому для λ в этом случае допустимы как значения $\lambda > 0$, так и значения $\lambda < -1$. Итак, область допустимых значений параметров ε , λ определена неравенствами

$$\lambda > 0 \quad (\varepsilon \ge 0), \qquad \lambda < -1 \quad (\varepsilon \le 0).$$
 (8)

2. Множество стационарных движений. При фиксированном ε условие (6) определяет *множество стационарных движений* гироскопа в кардановом подвесе. На плоскости β_0 , *y* оно изображается вертикальными прямыми $\beta_0 = \pm \pi/2 \pmod{2\pi}$ и двумя кривыми

$$y_1(\beta_0,\varepsilon) = \frac{1 + \sqrt{1 - \varepsilon \sin \beta_0}}{\sin \beta_0}, \quad y_2(\beta_0,\varepsilon) = \frac{1 - \sqrt{1 - \varepsilon \sin \beta_0}}{\sin \beta_0}.$$
 (9)

Так как функции $y_j(\beta_0, \varepsilon), \ j = 1, 2$, зависят от β_0 только через $\sin \beta_0$, то их графики, как и график синуса, зеркально симметричны относительно прямых $\beta_0 = \pm \pi/2 \pmod{2\pi}$. Множество стационарных движений и основное условие устойчивости (7) имеют 2π периодическую структуру относительно β_0 . Поэтому их достаточно исследовать для значений β_0 , принадлежащих какому-либо отрезку длины 2π . В качестве такого отрезка при $\varepsilon > 0$ выберем $[-3\pi/2; \pi/2]$, а при $\varepsilon \leq 0$ возьмем $[-\pi/2; 3\pi/2]$. Часть этого отрезка, где $1 - \varepsilon \sin \beta_0 \geq 0$, обозначим через $[a(\varepsilon); b(\varepsilon)]$.

Пользуясь стандартными методами математического анализа, нетрудно построить графики зависимостей функций $y_j(\beta_0, \varepsilon), \ j = 1, 2, \text{ от } \beta_0$ при разных ε . При этом для

определения производных указанных функций по β_0 их удобно представить следующим образом: $y_j(\beta_0, \varepsilon) = \varepsilon/(1 \mp \sqrt{1 - \varepsilon \sin \beta_0})$, верхний знак соответствует j = 1, а нижний – j = 2. В результате устанавливаем, что при $\varepsilon \ge 0$ множество стационарных движений имеет на плоскости β_0, y вид, изображенный на рис. 1.

Рис. 1. Множество стационарных движений при $\varepsilon \geq 0$.

Из (9) следует, что анализ зависимостей $y_j(\beta_0, \varepsilon)$, j = 1, 2, от β_0 при $\varepsilon < 0$ приводится к случаю $\varepsilon > 0$ с помощью замены $y_j = -\bar{y}_j$ (j = 1, 2), $\beta_0 = -\bar{\beta}_0$, $\varepsilon = -\bar{\varepsilon}$, где $\bar{y}_j, \bar{\beta}_0$ соответствуют случаю $\bar{\varepsilon} > 0$. Таким образом, при $\varepsilon < 0$ портрет множества стационарных движений на плоскости β_0, y получается из портрета аналогичного множества с таким же по модулю положительным ε при помощи двух зеркальных отражений относительно осей координат (или одним центральным отражением относительно начала координат). На плоскости β_0, y точки

$$X_{1} = (-\pi/2, -1 - \sqrt{1+\varepsilon}), \quad X_{2} = (-\pi/2, -1 + \sqrt{1+\varepsilon}) \quad (\varepsilon \ge -1);$$

$$X_{2} = (-\pi/2, -1 + \sqrt{1+\varepsilon}) \quad (\varepsilon \ge -1); \quad (10)$$

$$A_3 = (\pi/2, 1 - \sqrt{1-\varepsilon}), \qquad A_4 = (\pi/2, 1 + \sqrt{1-\varepsilon}) \qquad (\varepsilon \le 1),$$

ерессекаются прямые $\beta_0 = \pm \pi/2$ и кривые $u_i(\beta_0, \varepsilon)$ $i = 1, 2$ соответствуют точкам

где пересекаются прямые $\beta_0 = \pm \pi/2$ и кривые $y_j(\beta_0, \varepsilon)$, j = 1, 2, соответствуют точкам бифуркации в фазовом пространстве уравнений движения гироскопа. На рис. 1 значком * отмечены 2π -аналоги этих точек.

3. Основное условие устойчивости на прямых $\beta_0 = \pm \pi/2$. Обозначим через $S(y, \beta_0, \varepsilon, \lambda)$ левую часть основного условия устойчивости (7). На вертикальных прямых $\beta_0 = \pm \pi/2$ эта функция принимает вид $S_{\pm}(y, \varepsilon, \lambda) = -\lambda(y^2 \mp 2y \pm \varepsilon)$. Здесь выражение в скобках обращается в нуль при значениях y, равных ординатам точек бифуркации $X_k, k = \overline{1, 4}$, существующих при данном ε . Учитывая это, приходим к следующим заключениям. В случае $\varepsilon \geq 0$ (когда $\lambda > 0$) условие (7) выполняется на открытых

Б.И. Коносевич

вертикальных интервалах, лежащих между существующими точками X_k . В случае $\varepsilon \leq 0$ (когда $\lambda < -1$) условие (7) выполняется на лучах, лежащих на прямых $\beta_0 = \pm \pi/2$ вне замкнутых отрезков с концами в точках X_k .

4. Основное условие устойчивости на кривых $y = y_{1,2}(\beta_0, \varepsilon)$ при $\varepsilon \ge 0$. Прежде чем изучать условие (7) на кривых $y = y_j(\beta_0, \varepsilon), \ j = 1, 2$, исключим линейный по y член в левой части неравенства (7), пользуясь уравнением $y^2 \sin \beta_0 - 2y + \varepsilon = 0$, которое определяет указанные кривые. Тогда левая часть (7) записывается на этих кривых в виде

$$S_j(\beta_0,\varepsilon,\lambda) = \cos^2 \beta_0 \left[(\lambda + \cos^2 \beta_0) y_j^2(\beta_0,\varepsilon) + 4(1-\varepsilon \sin \beta_0) \right], \quad j = 1, 2.$$
(11)

Рассмотрим случай $\varepsilon > 0$. Так как $\lambda > 0$ при $\varepsilon > 0$ согласно (8), то $\lambda + \cos^2 \beta_0 > 0$ для всех β_0 . Далее, $1-\varepsilon \sin \beta_0 \ge 0$ для всех значений β_0 из отрезка $[a(\varepsilon); b(\varepsilon)]$, на котором определены кривые (9). Кроме того, $y_j(\beta_0, \varepsilon) \ne 0$ на этом отрезке (см. рис. 1). Таким образом, выражение, заключенное в (11) в квадратные скобки, строго положительно на отрезке $[a(\varepsilon); b(\varepsilon)]$, и следовательно, $S_j(\beta_0, \varepsilon, \lambda) > 0$ для всех β_0 из этого отрезка, исключая значения, где $\cos \beta_0 = 0$. Это означает, что в случае $\varepsilon > 0$ основное условие устойчивости (7) выполнено во всех точках кривых $y = y_j(\beta_0, \varepsilon), j = 1, 2$, за исключением бифуркационных точек $X_k, k = \overline{1, 4}$.

Положив $\varepsilon = 0$ в (11), сразу видим, что полученный выше результат остается верным и в случае, когда $\varepsilon = 0$ и $\lambda > 0$.

Рассмотрим случай, когда $\varepsilon = 0$ и $\lambda < -1$. Согласно (11), на "кривой" $y = y_2(\beta_0, 0) \equiv$ $\equiv 0$ имеем $S_2(\beta_0, \lambda, 0) = 4 \cos^2 \beta_0$. Следовательно, условие (7) снова выполнено во всех ее точках за исключением бифуркационных точек. На кривой $y = y_1(\beta_0, 0) = 2/\sin \beta_0$ выражение (11) принимает вид $S_1(\beta_0, \lambda, 0) = 4(\lambda + 1) \cos^2 \beta_0 / \sin^2 \beta_0$. Отсюда следует, что при $\lambda < -1$ будет $S_1(\beta_0, \lambda, 0) \leq 0$. Таким образом, при $\varepsilon = 0$, $\lambda < -1$ условие (7) на кривой $y = y_1(\beta_0, 0)$ не выполняется.

5. Основное условие устойчивости на кривых $y = y_{1,2}(\beta_0, \epsilon)$ при $\epsilon < 0$. В результате подстановки выражений (9) в (11) левая часть (7) записывается на кривых $y = y_j(\beta_0, \epsilon), \ j = 1, 2$, в виде

$$S_j(\beta_0,\varepsilon,\lambda) = \frac{\cos^2 \beta_0}{[1 \mp \xi(\beta_0,\varepsilon)]^2} [f_j(\xi(\beta_0,\varepsilon)) + (1+\lambda)\varepsilon^2], \quad j = 1,2,$$
(12)

где

$$\xi(\beta_0,\varepsilon) = \sqrt{1-\varepsilon\sin\beta_0}, \quad f_j(\xi) = (\xi \mp 1)^3 (3\xi \pm 1), \tag{13}$$

верхний знак соответствует j = 1, а нижний – j = 2. Тогда при фиксированных ε , λ границы интервалов для β_0 , на которых положительно выражение в квадратных скобках в (12), определяются уравнениями

$$f_j(\xi(\beta_0,\varepsilon)) = -(1+\lambda)\varepsilon^2, \quad j = 1, 2.$$
(14)

В соответствии с (8) их правые части являются положительными постоянными в расматриваемом случае $\varepsilon < 0$. Чтобы установить число и расположение решений этих уравнений, достаточно проанализировать зависимости их левых частей от β_0 .

Предварительно рассмотрим при $\varepsilon < 0$ на отрезке $[a(\varepsilon); b(\varepsilon)] \subseteq [-\pi/2; 3\pi/2]$ определенную в (13) функцию $\xi(\beta_0, \varepsilon)$. Границами данного отрезка являются

$$a(\varepsilon) = \begin{cases} -\pi/2, & \varepsilon \in [-1;0), \\ \arcsin 1/\varepsilon, & \varepsilon \le -1, \end{cases} \qquad b(\varepsilon) = \pi - a(\varepsilon)$$

причем $a(\varepsilon) \in [-\pi/2; 0)$, $b(\varepsilon) \in (\pi/2; \pi]$. При фиксированном $\varepsilon < 0$ функция $\xi(\beta_0, \varepsilon)$ монотонно возрастает на отрезке $[a(\varepsilon); \pi/2]$ от $\xi_{\min}(\varepsilon)$ до $\xi_{\max}(\varepsilon)$, а на отрезке $[\pi/2; b(\varepsilon)]$ она монотонно убывает от $\xi_{\max}(\varepsilon)$ до $\xi_{\min}(\varepsilon)$. Ее экстремальные значения равны

$$\xi_{\max}(\varepsilon) = \xi(\pi/2, \varepsilon) = \sqrt{1-\varepsilon}, \quad \varepsilon < 0; \quad \xi_{\min}(\varepsilon) = \xi(a(\varepsilon), \varepsilon) = \begin{cases} \sqrt{1+\varepsilon}, & \varepsilon \in [-1;0); \\ 0, & \varepsilon \le -1. \end{cases}$$

В точках $\beta_0 = 0$, π , принадлежащих, соответственно, интервалу монотонного возрастания и интервалу монотонного убывания, имеем $\xi(\beta_0, \varepsilon) = 1$.

5.1. Условие (7) на кривой $y = y_1(\beta_0, \varepsilon)$ при $\varepsilon < 0$. Поскольку $f_1(\xi) = (\xi - -1)^3(3\xi + 1)$, то $f_1(\xi(\beta_0, \varepsilon)) > 0$ для значений β_0 , где $\xi(\beta_0, \varepsilon) > 1$, то есть для $\beta_0 \in (0; \pi)$. Производная $f_1(\xi(\beta_0, \varepsilon))$ по β_0 равна $f'_1(\xi(\beta_0, \varepsilon)) = -6\varepsilon \cos \beta_0 [\xi(\beta_0, \varepsilon) - 1]^2$. Таким образом, при $\varepsilon < 0$ функция $f_1(\xi(\beta_0, \varepsilon))$ монотонно возрастает на $[a(\varepsilon); \pi/2]$ и монотонно убывает на $[\pi/2; b(\varepsilon)]$. При $\beta_0 = \pi/2$ она имеет положительный максимум

$$f_{1\max}(\varepsilon) = f_1(\xi_{\max}(\varepsilon)) = (\sqrt{1-\varepsilon} - 1)^3 (3\sqrt{1-\varepsilon} + 1),$$
(15)

а своего минимума на отрезке $[a(\varepsilon); b(\varepsilon)]$ она достигает на концах этого отрезка. Следовательно, график зависимости $f_1(\xi(\beta_0, \varepsilon))$ от β_0 при $\varepsilon < 0$ имеет вид, изображенный на рис. 2.

Рис. 2. Зависимость $f_1(\xi(\beta_0, \varepsilon))$ от β_0 при $\varepsilon < 0$.

Рассмотрим теперь уравнение (14) при j = 1. Его решениями являются абсциссы β_0 точек пересечения горизонтальной прямой $y = -(1 + \lambda)\varepsilon^2$ и графика $f_1(\xi(\beta_0, \varepsilon))$. В соответствии с (8), в случае $\varepsilon < 0$ параметр λ может принимать все значения $\lambda < -1$. При уменьшении λ от -1 до $-\infty$ упомянутая прямая поднимается в верхней полуплоскости на рис. 2 от оси абсцисс до ∞ .

Обозначим через $\lambda^{(1)}(\varepsilon)$ значение λ , при котором прямая $y = -(1 + \lambda)\varepsilon^2$ касается на рис. 2 графика $f_1(\xi(\beta_0, \varepsilon))$ в точке максимума. Согласно (15), имеем

$$\lambda^{(1)}(\varepsilon) = -1 - f_{1\max}(\varepsilon)/\varepsilon^2 =$$

= -4(1-\varepsilon)/(\sqrt{1-\varepsilon}+1)^2, \varepsilon < 0. (16)

Тогда для значений $\varepsilon < 0, \lambda \in (\lambda^{(1)}(\varepsilon); -1)$ эта прямая пересекает график $f_1(\xi(\beta_0, \varepsilon))$ в двух точках промежутка $(0; \pi)$:

$$\beta_1^{(1)}(\varepsilon,\lambda) \in (0;\pi/2), \quad \beta_2^{(1)}(\varepsilon,\lambda) \in (\pi/2;\pi)$$
$$(\beta_2^{(1)}(\varepsilon,\lambda) = \pi - \beta_1^{(1)}(\varepsilon,\lambda)).$$

На интервале $(\beta_1^{(1)}(\varepsilon,\lambda);\beta_2^{(1)}(\varepsilon,\lambda))$ имеем $f_1(\xi(\beta_0,\varepsilon)) > -(1+\lambda)\varepsilon^2$, и поэтому, согласно (12), во всех точках этого интервала за исключением его середины $\beta_0 = \pi/2$ получаем $S_1(\beta_0,\varepsilon,\lambda) > 0$.

Итак, если при $\varepsilon < 0$ параметр λ принадлежит интервалу ($\lambda^{(1)}(\varepsilon); -1$), то существует интервал ($\beta_1^{(1)}(\varepsilon, \lambda); \beta_2^{(1)}(\varepsilon, \lambda)$) значений β_0 , во всех точках которого (за исключением его середины $\beta_0 = \pi/2$) выполняется основное условие устойчивости (7) для кривой $y = y_1(\beta_0, \varepsilon)$. В точках этой кривой, соответствующих значениям β_0 вне данного интервала, условие (7) не выполняется. Оно не выполняется также на всей кривой $y = y_1(\beta_0, \varepsilon)$, когда $\varepsilon < 0$ и $\lambda < \lambda^{(1)}(\varepsilon)$.

5.2. Условие (7) на кривой $y = y_2(\beta_0, \varepsilon)$ при $\varepsilon < 0$. Из (13) при j = 2 имеем $f_2(\xi) = (\xi + 1)^3(3\xi - 1)$. Следовательно, производная функции $f_2(\xi(\beta_0, \varepsilon))$ по β_0 равна $f'_2(\xi(\beta_0, \varepsilon)) = -6\varepsilon \cos \beta_0 [\xi(\beta_0, \varepsilon) + 1]^2$. Таким образом, при $\varepsilon < 0$ функция $f_2(\xi(\beta_0, \varepsilon))$ монотонно возрастает на $[a(\varepsilon); \pi/2]$ и монотонно убывает на $[\pi/2; b(\varepsilon)]$. Своего максимума на отрезке $[a(\varepsilon); b(\varepsilon)]$ она достигает в его середине $\beta_0 = \pi/2$:

$$f_{2\max}(\varepsilon) = f_2(\xi_{\max}(\varepsilon)) = (\sqrt{1-\varepsilon}+1)^3(3\sqrt{1-\varepsilon}-1), \quad \varepsilon < 0,$$

а своего минимума - на его концах:

$$f_{2\min}(\varepsilon) = f_2(\xi_{\min}(\varepsilon)) = \begin{cases} (\sqrt{1} + \varepsilon + 1)^3 (3\sqrt{1} + \varepsilon - 1), & \varepsilon \in [-1; 0), \\ -1, & \varepsilon \leq -1. \end{cases}$$

Рис. 3. Зависимость $f_2(\xi(\beta_0, \varepsilon))$ от β_0 при $\varepsilon < 0$.

Из этих формул следует, что при $\varepsilon < 0$ всегда $f_{2\max}(\varepsilon) > 0$, а $f_{2\min}(\varepsilon) > 0$ только когда $\varepsilon \in [-1; 0)$ и $3\sqrt{1+\varepsilon} - 1 > 0$, то есть при $\varepsilon \in (-8/9; 0)$. При $\varepsilon \le -8/9$ будет $f_{2\max}(\varepsilon) \le 0$. В последнем случае на отрезке $[a(\varepsilon); b(\varepsilon)]$ существуют две точки $a^{(2)}(\varepsilon)$, $b^{(2)}(\varepsilon)$, где $f_2(\xi(\beta_0, \varepsilon)) = 0$. Они определяются уравнением $\xi(\beta_0, \varepsilon) = \sqrt{1-\varepsilon \sin \beta_0} = 1/3$, откуда

$$a^{(2)}(\varepsilon) = \arcsin 8/9\varepsilon \in (-\pi/2; 0),$$

$$b^{(2)}(\varepsilon) = \pi - a^{(2)}(\varepsilon) \in (\pi; 3\pi/2), \quad \varepsilon \le -8/9.$$
(17)

График функции $f_2(\xi(\beta_0, \varepsilon))$ в зависимости от β_0 при фиксированных $\varepsilon < 0$ изображен на рис. 3.

Обозначим через $\lambda_1^{(2)}(\varepsilon), \lambda_2^{(2)}(\varepsilon)$ значения λ , при которых прямая $y = -(1 + \lambda)\varepsilon^2$ проходит на уровне максимума и положительного минимума этой функции:

$$\lambda_1^{(2)}(\varepsilon) = -1 - f_{2\max}(\varepsilon)/\varepsilon^2 = -4(1-\varepsilon)/(\sqrt{1-\varepsilon}-1)^2, \quad \varepsilon < 0,$$

$$\lambda_2^{(2)}(\varepsilon) = -1 - f_{2\min}(\varepsilon)/\varepsilon^2 = -4(1+\varepsilon)/(\sqrt{1+\varepsilon}-1)^2, \quad \varepsilon \in (-8/9;0).$$
(18)

При $\varepsilon \in (-8/9; 0)$ и $\lambda \in (\lambda_2^{(2)}(\varepsilon); -1)$ вся прямая $y = -(1 + \lambda)\varepsilon^2$ расположена ниже графика функции $y = f_2(\xi(\beta_0, \varepsilon))$. Тогда в формуле (12), взятой при j = 2, выражение в квадратных скобках положительно при всех $\beta_0 \in [-\pi/2; 3\pi/2]$, и следовательно, условие (7) выполнено во всех точках кривой $y = y_2(\beta_0, \varepsilon)$ за исключением точки бифуркации при $\beta_0 = \pi/2$.

При $\varepsilon \in (-8/9;0), \lambda \in (\lambda_1^{(2)}(\varepsilon), \lambda_2^{(2)}(\varepsilon)),$ а также при $\varepsilon \leq -8/9, \lambda \in (\lambda_1^{(2)}(\varepsilon);-1)$ прямая $y = -(1+\lambda)\varepsilon^2$ пересекает график функции $y = f_2(\xi(\beta_0,\varepsilon))$ в двух точках с абсциссами

$$\beta_1^{(2)}(\varepsilon,\lambda) \in (-\pi/2;\pi/2), \quad \beta_2^{(2)}(\varepsilon,\lambda) = \pi - \beta_1^{(2)}(\varepsilon,\lambda) \in (\pi/2;3\pi/2)$$

Поэтому выражение в квадратных скобках в формуле (12), рассматрваемой при j = 2, положительно на интервале $(\beta_1^{(2)}(\varepsilon, \lambda); \beta_2^{(2)}(\varepsilon, \lambda))$ с центром в $\beta_0 = \pi/2$. Следовательно, условие (7) для кривой $y = y_2(\beta_0, \varepsilon)$ выполнено здесь во всех точках этого интервала за исключением точки $\beta_0 = \pi/2$ и не выполнено вне данного интервала.

При $\varepsilon < 0$ и всех $\lambda \leq \lambda_1^{(2)}(\varepsilon)$ прямая $y = -(1 + \lambda)\varepsilon^2$ расположена выше графика функции $y = f_2(\xi(\beta_0, \varepsilon))$ или касается его при $\beta_0 = \pi/2$. Следовательно, условие (7) в этом случае не выполнено на всей кривой $y = y_2(\beta_0, \varepsilon)$.

6. Граничные поверхности . Чтобы представить полученные результаты в более наглядной форме, построим в пространстве переменных $\beta_0, \varepsilon, \lambda$ поверхности $\beta_0 = \beta_k^{(j)}(\varepsilon, \lambda), \quad j, k = 1, 2$, определяемые уравнениями (14).

6.1. Граничные поверхности для кривой $y = y_1(\beta_0, \varepsilon)$. Значения $\beta_k^{(1)}(\varepsilon, \lambda)$, k = 1, 2, являются при данных $\varepsilon < 0$, $\lambda \in [\lambda^{(1)}(\varepsilon); -1)$ абсциссами левой и правой точек пересечения прямой $y = -(1 + \lambda)\varepsilon^2$ с графиком $y = f_1(\xi(\beta_0, \varepsilon))$ как функции β_0 . Как видно из рис. 2, при увеличении λ от $\lambda^{(1)}(\varepsilon)$ до -1 прямая $y = -(1 + \lambda)\varepsilon^2$ опускается от уровня $f_{1\max}(\varepsilon) > 0$ до 0, и при этом функция $\beta_1^{(1)}(\varepsilon, \lambda)$ монотонно убывает от $\pi/2$ до 0, а функция $\beta_2^{(1)}(\varepsilon, \lambda)$ монотонно возрастает от $\pi/2$ до π .

Рис. 4. Зависимости $\beta_1^{(1)}(\varepsilon, \lambda),$ $\beta_2^{(1)}(\varepsilon, \lambda)$ от $\lambda.$

Рис. 5. График функции $\lambda^{(1)}(\varepsilon)$.

Монотонный характер изменения этих функций можно установить также аналитически, определив $\partial \beta_k^{(1)}(\varepsilon, \lambda) / \partial \lambda$, k = 1, 2, как производные неявных функций из уравнения (14) при j = 1:

$$\partial \beta(\varepsilon, \lambda) / \partial \lambda = \varepsilon / 6 \cos \beta(\varepsilon, \lambda) [\xi(\beta(\varepsilon, \lambda)) - 1]^2$$

Здесь под $\beta(\varepsilon, \lambda)$ понимается одна из функций $\beta_k^{(1)}(\varepsilon, \lambda)$, k = 1, 2. Так как $\beta_1^{(1)}(\varepsilon, \lambda)$, $\beta_2^{(1)}(\varepsilon, \lambda)$ принадлежат, соответственно, интервалам $(0; \pi/2)$ и $(\pi/2; \pi)$, где $\xi(\beta(\varepsilon, \lambda)) > 1$, то $\partial \beta_k^{(1)}(\varepsilon, \lambda)/\partial \lambda$ имеет при $\varepsilon < 0$ знак, противоположный знаку $\cos \beta_k^{(1)}(\varepsilon, \lambda)$, то есть $\partial \beta_1^{(1)}(\varepsilon, \lambda)/\partial \lambda < 0$, $\partial \beta_2^{(1)}(\varepsilon, \lambda)/\partial \lambda > 0$. Далее, при $\lambda \to \lambda^{(1)}(\varepsilon)$ имеем $\cos \beta_k^{(1)}(\varepsilon, \lambda) \to \cos \pi/2 = 0$, и следовательно, $\partial \beta_k^{(1)}(\varepsilon, \lambda)/\partial \lambda \to \infty$, k = 1, 2. При $\lambda \to -1$ имеем $\beta_1^{(1)}(\varepsilon, \lambda) \to 0$, $\beta_2^{(1)}(\varepsilon, \lambda) \to \pi$, поэтому $\xi(\beta_k^{(1)}(\varepsilon, \lambda)) \to 1$, и следовательно, $\partial \beta_k^{(1)}(\varepsilon, \lambda)/\partial \lambda \to \infty$. Теперь нетрудно построить графики зависимости функций $\beta_k^{(1)}(\varepsilon, \lambda)$, k = 1, 2, от λ при фиксированном $\varepsilon < 0$ (рис. 4).

Областью определения этих функций является промежуток $[\lambda^{(1)}(\varepsilon); -1)$. Построим график зависимости $\lambda^{(1)}(\varepsilon)$ от $\varepsilon < 0$. Из выражения (16) находим $d\lambda^{(1)}(\varepsilon)/d\varepsilon =$

Б.И. Коносевич

 $4/(\sqrt{1-\varepsilon}+1)^3$. Таким образом, $d\lambda^{(1)}(\varepsilon)/d\varepsilon > 0$ на полуоси $(-\infty; 0)$, при $\varepsilon \to -\infty$ имеем $\lambda^{(1)}(\varepsilon) \to -4$, а при $\varepsilon \to 0$ имеем $\lambda^{(1)}(\varepsilon) \to -1$. Следовательно, график функции $\lambda^{(1)}(\varepsilon)$ имеет вид, изображенный на рис. 5.

Рис. 6. Графики зависимостей $\beta_1^{(2)}(\varepsilon,\lambda), \beta_2^{(2)}(\varepsilon,\lambda)$ от λ .

Графики на рис. 4 представляют сечения поверхностей $\beta_0 = \beta_k^{(1)}(\varepsilon, \lambda), \ k = 1, 2,$ плоскостями $\varepsilon = \text{const} < 0$. Пользуясь рис. 4, 5, легко построить и сами эти поверхности (рис. 9, *a*).

Рис. 7. Графики $a^{(2)}(\varepsilon), b^{(2)}(\varepsilon)$.

Рис. 8. Графики $\lambda_1^{(2)}(\varepsilon), \, \lambda_2^{(2)}(\varepsilon).$

6.2. Граничные поверхности для кривой $y = y_2(\beta_0, \varepsilon)$. Рассмотрим сначала случай, когда $\varepsilon \in (-8/9; 0)$. Тогда при увеличении λ от $\lambda_1^{(2)}(\varepsilon)$ до $\lambda_2^{(2)}(\varepsilon)$ прямая $y = -(1 + \lambda)\varepsilon^2$ на рис. 3 опускается от уровня $f_{2\max}(\varepsilon) > 0$ до $f_{2\min}(\varepsilon) > 0$, и при этом $\beta_1^{(2)}(\varepsilon, \lambda)$ монотонно убывает от $\pi/2$ до $-\pi/2$, а $\beta_2^{(2)}(\varepsilon, \lambda)$ монотонно возрастает от $\pi/2$ до $3\pi/2$. При дальнейшем увеличении λ от $\lambda_2^{(2)}(\varepsilon)$ до -1 прямая $y = -(1 + \lambda)\varepsilon^2$ проходит ниже графика $y = f_2(\xi(\beta_0, \varepsilon))$, и поэтому при фиксированном $\varepsilon \in (-8/9; 0)$ и всех $\lambda \in [\lambda_2^{(2)}(\varepsilon); -1)$ имеем $\beta_1^{(2)}(\varepsilon, \lambda) = -\pi/2$, $\beta_2^{(2)}(\varepsilon, \lambda) = 3\pi/2$. Из уравнения (14) при j = 2 находим

$$\partial\beta(\varepsilon,\lambda)/\partial\lambda = \varepsilon/6\cos\beta(\varepsilon,\lambda)[\xi(\beta(\varepsilon,\lambda))+1]^2.$$
(19)

Здесь под $\beta(\varepsilon, \lambda)$ следует понимать одну из функций $\beta_k^{(2)}(\varepsilon, \lambda)$, k = 1, 2. Так как $\beta_1^{(2)}(\varepsilon, \lambda)$ и $\beta_2^{(2)}(\varepsilon, \lambda)$ принадлежат соответственно интервалам $(-\pi/2; \pi/2)$ и $(\pi/2; 3\pi/2)$, а $\varepsilon < 0$, то $\partial \beta_1^{(2)}(\varepsilon, \lambda)/\partial \lambda < 0$, $\partial \beta_2^{(2)}(\varepsilon, \lambda)/\partial \lambda > 0$. Если $\lambda \to \lambda_1^{(2)}(\varepsilon)$ или $\lambda \to \lambda_2^{(2)}(\varepsilon)$ при $\varepsilon \in (-8/9; 0)$, то $\cos \beta_k^{(2)}(\varepsilon, \lambda) \to 0$, и следовательно, $\partial \beta_k^{(2)}(\varepsilon, \lambda)/\partial \lambda \to \infty$. Теперь нетрудно построить графики зависимости $\beta_k^{(2)}(\varepsilon, \lambda)$, k = 1, 2, от λ при фиксированном $\varepsilon \in (-8/9; 0)$ (см. рис. 6, a).

Рассмотрим теперь случай $\varepsilon \leq -8/9$. В этом случае при увеличении λ от $\lambda_1^{(2)}(\varepsilon)$ до -1 прямая $y = -(1 + \lambda)\varepsilon^2$ на рис. З опускается от $f_{2\max}(\varepsilon) > 0$ до 0, так что $\beta_1^{(2)}(\varepsilon, \lambda)$ монотонно убывает от $\pi/2$ до $a^{(2)}(\varepsilon)$, а $\beta_2^{(2)}(\varepsilon, \lambda)$ монотонно возрастает от $\pi/2$ до $b^{(2)}(\varepsilon)$ (функции $a^{(2)}(\varepsilon)$, $b^{(2)}(\varepsilon)$ определены в (17)). Так как $\cos a^{(2)}(\varepsilon) \neq 0$, $\cos b^{(2)}(\varepsilon) \neq 0$ при $\varepsilon < -8/9$, то из (19) следует, что в отличие от предыдущиих случаев здесь производные $\partial \beta_k^{(2)}(\varepsilon, \lambda)/\partial \lambda$ конечны при $\lambda \to -1$ (см. рис. 6, δ). Пользуясь выражениями (17) и (18) функций $a^{(2)}(\varepsilon)$, $b^{(2)}(\varepsilon)$ и $\lambda_1^{(2)}(\varepsilon)$, $\lambda_2^{(2)}(\varepsilon)$, построим на рис. 7, 8 их графики.

Рис. 9. Поверхности: a) $\beta_0 = \beta_k^{(1)}(\varepsilon, \lambda), \ \delta) \ \beta_0 = \beta_k^{(2)}(\varepsilon, \lambda), \ k = 1, 2.$

Графики на рис. 6 изображают сечения поверхностей $\beta_0 = \beta_k^{(2)}(\varepsilon, \lambda), \ k = 1, 2,$ плоскостями $\varepsilon = \text{const} < 0$. Это позволяет с помощью рис. 7, 8 построить указанные поверхности (см. рис. 9, 6), которые вместе с результатами п. 3 представляют решение задачи о выделении устойчивых стационарных движений асинхронного гироскопа.

- 1. *Магнус К.* Об устойчивости движения тяжелого симметричного гироскопа в кардановом подвесе // Прикл. математика и механика. 1958. **22**, вып. 2. С. 173-178.
- 2. *Румянцев В. В.* Об устойчивости движения гироскопа в кардановом подвесе// Там же. **22**, вып. 3. С. 374-378.
- 3. Лунц Я.Л. Введение в теорию гироскопов. М.: Наука, 1972. 296 с.
- 4. Климов Д.М., Харламов С.А. Динамика гироскопа в кардановом подвесе. М.: Наука, 1978. 208 с.
- 5. Харламов С.А. К теории астатического гироскопа с электрическим приводом, установленного в кардановом подвесе // Изв. АН СССР. Механика и машиностроение. 1963. N 6. С. 45-54.
- 6. Крементуло В. В. Об устойчивости движения гироскопа в кардановом подвесе при наличии момента относительно оси ротора // Изв. АН СССР. Механика. – 1965. – N 3. – С. 156-159.
- 7. *Коносевич Б.И.* Скорость ухода оси ротора в обобщенной задаче о гироскопе в кардановом подвесе // Механика твердого тела. 1972. Вып. 4. С. 82-92.
- Коносевич Б.И. Об устойчивости стационарных движений асинхронного гироскопа в кардановом подвесе // Там же. – 1977. – Вып. 9. – С. 61-72.
- 9. Коносевич Ю.Б. Условия устойчивости устойчивости стационарных режимов движения синхронного гироскопа в кардановом подвесе // См. наст. сборник.

Ин-т прикл. математики и механики НАН Украины, Донецк konos@iamm.ac.donetsk.ua

Получено 01.09.03