УДК 531.38

©2008. Д.Л. Абраров

РЕШЕНИЕ УРАВНЕНИЙ ВОЛЧКА ЭЙЛЕРА С УЧЕТОМ ИХ ОБРАТИМОСТИ ПО ВРЕМЕНИ

Показывается, что в случае Эйлера решение уравнений Эйлера–Пуассона представляется нормированной экспонентой от ζ -функции эллиптической кривой специального вида над полем рациональных чисел Q. Данная функция представляет специализацию общего решения уравнений Эйлера–Пуассона в экспонентах от L-функций эллиптических кривых над Q, полученного в [1]. Проводится сопоставление полученного решения с классическим решением.

Введение. Целью данной работы является демонстрация общего решения уравнений Эйлера–Пуассона в экспонентах от *L*-функций эллиптических кривых, полученного в [1], на примере волчка Эйлера. Разъясняется аналитический, геометрический и механический смысл указанной специализации. При этом соответствующие вычисления проводятся независимо от вычислений работы [1] и более детально, что позволяет конкретизировать вид спектральной кривой для случая Эйлера из [1]. Применяемая техника наряду со случаем Эйлера может быть использована и для других известных случаев интегрируемости уравнений Эйлера–Пуассона.

В случае Эйлера механическая система имеет три существенных вещественных параметра – главные моменты инерции тела. Уравнения движения тела в этом случае имеют вид

$$\frac{d\boldsymbol{M}}{dt} = \left[\boldsymbol{M}, \boldsymbol{\omega}\right],\tag{1}$$

где $t \in R$ – вещественное время, M – вектор кинетического момента твердого тела, ω – вектор угловой скорости тела, $[\cdot, \cdot]$ – оператор векторного произведения в евклидовом пространстве E^3 . При этом $M = I \cdot \omega$; оператор I представлен диагональными матрицами размера 3×3 с положительными вещественными элементами, удовлетворяющими неравенству треугольника.

1. Эквивариантное уточнение классических квадратур для волчка Эйлера. Уточнение состоит в учете того обстоятельства, что квадратура, возникающая в результате классического вычисления, имеет ветвление в сочетании с "более широкой областью определения" аргумента квадратуры, включающей бесконечно удаленную точку. Все эти эффекты являются проявлением свойства обратимости по времени исходных уравнений.

1.1. Аналитический аспект уточнения квадратур. Важно, что в итоге удается явно вычислить обращение уточненной квадратуры в виде дзетафункции некоторой эллиптической кривой, являющейся эквивариантной специализацией классической дзета-функции Римана. После этого проводится

сопоставление полученного результата с известным обращением классических квадратур.

Уравнение (1) приводится к виду на компоненты ω (см. [2]):

$$\frac{du}{dt} \pm n\sqrt{(1-u^2)(1-k^2u^2)} = 0.$$
 (2)

Это уравнение отличается от соответствующего уравнения, зачастую приводимого в соответствующей литературе, знаком: вместо знака "+" здесь фигурирует знак \pm . Вместе с тем, в ряде руководств, например, в [2] и [3], имеется анализ выбора знаков. Впрочем, предлагаемый в них алгоритм выбора знаков у переменных p, q, r ограничивает комбинаторику их выбора, поскольку не полностью учитывает симметризующее действие отображения $Z_2[t \rightarrow -t]$ обратимости по времени на исходном уравнении движения (1), допускающее произвольный выбор знаков. Действительно, меняя знак времени в любом скалярном уравнении векторного уравнения (1), можно получить любую формально возможную комбинацию знаков переменных в этом уравнении. Теперь остается заметить, что такая смена знака времени в любом из скалярных уравнений не меняет самих уравнений (1) в силу их обратимости по времени. Собственно говоря, эта симметризационная процедура и делается при получении дополнительного интеграла уравнений (1).

И именно это, на первый взгляд, незначительное обстоятельство неполноты алгоритма определения знаков приводит к совершенно иной аналитической структуре окончательного ответа.

Теперь из уравнения (2) получаем уточненную классическую квадратуру

$$n(t-t_0) = \pm \int_0^u \frac{du}{\sqrt{(1-u^2)(1-k^2u^2)}},$$
(3)

где t_0 – момент времени, когда u = q = 0, и где знак \pm должен быть дополнительно согласован с фазовым потоком исходных уравнений (1) с учетом их обратимости по времени, что и составляет содержание данной работы.

2. Соотношение результатов обращений классической квадратуры и ее эквивариантного уточнения. Только после специального функционального преобразования, индуцированного отображением $Z_2[t \rightarrow -t]$, эллиптические тета-функции Якоби, представляющие результат классического обращения (см. [2, 3])), становятся эквивариантными координатами в полном фазовом пространстве волчка Эйлера.

Результатом подправленного обращения оказывается специальная функция $\exp(\zeta_{eq}(s)) = \exp(\zeta(s, E/Q)(\zeta(s, E/Q) = 0))$ комплексного аргумента s, имеющая смысл эквивариантной специализации ζ -функции Римана.

Аналитическая структура доработки обращения, составляющая техническое содержанием данной работы, эквивалентна эквивариантной специализации известной формулы для дзета-функции Римана (см. [5])

$$\zeta_{eq}(s) = \left(\frac{1}{s} - \frac{1}{1-s} + \int_{1}^{\infty} \left(x^{\frac{s}{2}-1} + x^{-\frac{s}{2}-\frac{1}{2}}\right)\theta_{0}(x)dx \otimes_{R} E/Q,$$

где функция $\theta_0(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$ имеет смысл потенциала фазового потока на

свободном двояко-асимптотическом движении волчка Эйлера, E/Q – эллиптическая кривая, задаваемая уравнением $y^2 = x^3 + px + q$, где p, q – любые неравные простые числа, имеющая смысл уравнения свободного двояко-асимптотического движения; $dx \otimes_R E/Q$ – эквивариантная мера.

Выражение $(x^{\frac{s}{2}-1} + x^{-\frac{s}{2}-\frac{1}{2}})$ имеет смысл эквивариантного "непрерывного" знака $\pm \pmod{Z_2[t \to -t]}$ в уточненной классической квадратуре и имеет смысл эквивариантной склейки свободных двояко-асимптотических движений изо всех компонент гладкости сепаратрисы в $t = \infty$.

Таким образом, функцию $\exp(\zeta_{eq}(s))$ можно определить как решение уравнения (1) в духе определения многих известных специальных функций.

2.1. Соотношение классического решения и его эквивариантного уточнения с механической точки зрения. Классическое решение без знаков перед квадратурой (3) можно интерпретировать как некоторую естественную проекцию реального движения волчка Эйлера. Геометрически это решение представляется качением только верхней сферы со вписанным в нее тетраэдром (см. рис. 2 ниже) и реализует классическую интерпретацию Пуансо. Соответствующее движение волчка не является $\gamma - \omega$ монодромным.

Классическому решению (3) с частичным учетом знаков (по [2, 3]) и дополнительной нормировкой начальных условий на относительное равновесие, реализуемое вращением вокруг средней оси эллипсоида инерции, соответствует маятниковое вращение волчка: вектор его кинетического момента совершает маятниковые колебания в E^3 . Это движение – точный аналог "маятникового" режима движения математического маятника и имеет смысл движения с относительно небольшим запасом полной энергии.

Геометрически классическое решение "с частичным" учетом знаков представляется зеркально симметричным качением верхней и нижней сфер со вписанным в них тетраэдром (см. рис. 2). Это движение, еще не являясь $\gamma - \omega$ монодромным, представляет "удвоение" интерпретации Пуансо.

Уточненному решению – классическому решению с полным учетом знаков и дополнительной нормировкой начальных условий на указанное выше неустойчивое относительное равновесие волчка – соответствует "ротационное" вращение вектора кинетического момента волчка. Это движение – точный аналог "ротационного" режима движения математического маятника. Такое движение имеет достаточно большой запас полной энергии.

Также это движение уже соответствует $\gamma - \omega$ монодромному качению сфер, изображенному на рис. 2, и представляет эквивариантно продолженное в точку $t = \infty$ зеркально симметричное "удвоение" интерпретации Пуансо.

Таким образом, генератором как маятникового, так и ротационного режимов движения волчка Эйлера является его специальное резонансное движение – вращение вокруг средней оси эллипсоида инерции – точный аналог вертикального положения равновесия математического маятника. Данное движение является относительным неустойчивым равновесием волчка Эйлера

со свободной в E^3 указанной осью вращения. Свобода оси вращения соответствует тому, что центр тяжести волчка находится в точке его закрепления.

Канонической координатой на пространстве всех движений волчка как пространстве колебаний вокруг средней оси эллипсоида инерции и является функция $\exp(\zeta_{eq}(s))$, где *s* можно интерпретировать как каноническую координату на сфере Пуассона. Точная аналогия с математическим маятником здесь состоит в том, что все пространство движений маятника в точности реализуется пространством его выходов из верхнего положения равновесия.

2.2. Геометрическая интерпретация соотношения результатов обращений классической квадратуры и ее эквивариантного уточнения. Приведем теперь в сопоставлении графики результатов обращения классической квадратуры и ее эквивариантного уточнения. Данные графики можно рассматривать как геометрические интерпретации орбиты рассматриваемого отображение определено в эквивариантной гиперплоскости универсального фазового пространства $CP^3((\omega, \gamma))$ уравнений (1), где $\omega, \gamma \in C^3$ – двумерном проективном комплексном пространстве $CP^2 \cong CP^3((\omega, \gamma))//{\{[\omega, \gamma] = 0\}}$ (соотношение $[\omega, \gamma] = 0$ выделяет рассматриваемое бимонодромное движение тетраэдра и выполняется на сепаратрисе волчка Эйлера). Тем не менее, это отображение можно реализовать и в евклидовом пространстве E^3 , так как оно, благодаря симметрии $Z_2[t \to -t]$, имеет скрытую динамическую структуру над C, согласующую проективную (эллиптическую), евклидову (плоскую) и симплектическую (гиперболическую) структуры. Это эквивариантная зеркальная симметрия "проективная-симлектическая геометрия" относительно "евклидова зеркала".

Рис. 1.

Тэта-функция $\theta_0(x)$ координатизирует линейчатую гиперповерхность $S[\theta_0(x)]$ в CP^2 , схематически представленную в левой части рис. 1 и имеющей вид динамической развертки конической поверхности в пространстве E^3 . Эту

поверхность можно рассматривать как одну из карт на орбите отображения непрерывного точного отображения центрально-подобного вращения в пространстве E^3 , являющимся динамическим отображением в E^3 . Это отображение также эквивалентно отображению непрерывной центральной симметрии в E^3 и отображению непрерывной симметризованной обкатки в E^3 одним конусом другого (см. коническую интерпретацию движения волчка Эйлера в [6]), потенциалом которых как раз и является функция $\zeta_{eq}(s)$.

При этом вектор кинетического момента M(t) является касательным вектором к поверхности $S[\zeta_{eq}(s)]$, и касание происходит вдоль ее образующих (с координатой t), как указано на рис. 1. Поверхность $S[\zeta_{eq}(s)]$ является эквивариантным уточнением лиувиллевых торов, организованных в блоки, а поверхность $S[\exp(\zeta_{eq}(s))]$ – эквивариантным уточнением фазового потока в этих блоках.

2.3. Соотношение классических эллиптических кривых над Cи их эквивариантного уточнения – эллиптических кривых над Q. С классической квадратурой ассоциирована эллиптическая кривая, задаваемая уравнением $y^2 = x^3 + ax + b$ в аффинных координатах $x, y \in C$, где коэффициенты $a, b \in R$. Топологически данная кривая представляется фактором $E_C \cong C/\Gamma$ и изоморфна тору $S^1 \times S^1$, что также отражается теоремой Лиувилля–Арнольда.

Кривой, ассоциированной с уточненной квадратурой, оказывается эллиптическая кривая E/Q, нормальная форма которой имеет такое же аффинное уравнение, но коэффициенты задающего ее уравнения более специальны. Связь между циклами кривых E_C и E/Q представлена на рис. 2.

Рис. 2.

Как показано на рис. 2, кривая E/Q топологически представляется непрерывным качением двух зеркально симметричных относительно плоскости C сфер S_1^2 и S_2^2 по решетке Γ , согласованным с зеркальной симметрией вписанных в них тетраэдров. Орбиты такого качения сфер реализуют циклы $c_1(E/Q)$, $c_2(E/Q)$ кривой $E/Q \cong C[s]/\Gamma_{eq}$ (γ -цикл и ω -цикл). Рис. 2 отражает как глобальную геометрию переменных γ и ω , так и геометрию их численной координатизации, производимой ниже в леммах 1–14 (см. также

изображение величины p^{-s} на нем). Важно отметить, что рис. 2 можно интерпретировать как качение без проскальзывания сферы S^2 по плоскости, обладающее групповым свойством как по конфигурационным переменным, так и по угловым скоростям. Это и есть эквивариантное уточнение интерпретации Пуансо.

3. Решение уравнений волчка Эйлера в сопоставлении с решением уравнений общего волчка. Эквивариантная склейка ветвей квадратуры (3) посредством отображения инволюции обратимости по времени приводит к следующей структуре пространства решений в случае Эйлера.

Теорема 1. 1. Общее решение дифференциальных уравнений (1) волчка Эйлера, описывающих динамику вектора $M(s), s \in C$, кинетического момента тела, представляется функцией

$$\boldsymbol{M}(s) = \exp\bigl(\zeta(s, E/Q)(\zeta(s, E/Q) = 0)\bigr),$$

где E/Q – полустабильная эллиптическая кривая E/Q над полем рациональных чисел Q, задаваемая уравнением в аффинной форме

$$y^2 = x^3 + px + q,$$

где p, q – различные простые числа, функция $\zeta(s, E/Q)$ является ζ -функцией эллиптической кривой E/Q.

2. Зависимости M(s), $\gamma(t)$, $\omega(t)$ имеют структуру векторно-значных функций соответствующих аргументов s, t с числом компонент, равным трем.

3. Зависимости переменных $\gamma(t)$ и $\omega(t)$ от вещественного времени t имеют следующий вид:

$$\gamma(t, t_0) = \operatorname{Re}\left(\zeta(\mathbf{s}, \mathbf{E}/\mathbf{Q})\boldsymbol{\zeta}_0(\mathbf{s}, \mathbf{E}/\mathbf{Q})\right),$$
$$\omega(t, t_0) = \operatorname{Im}\left(\zeta(s, E/Q)\boldsymbol{\zeta}_0(s, E/Q)\right),$$

где $\zeta_0(s, E/Q) = ((\zeta(s_1, E/Q) = 0), (\zeta(s_2, E/Q) = 0), (\zeta(s_3, E/Q) = 0))$ – вектор, состоящий из трех последовательных нулей функции $\zeta(s, E/Q)$; Re, Im – вещественная и мнимая части соответствующих комплексно-значных функций.

4. Каждый вектор начальных условий, отвечающий общему решению, определяется следующим образом:

$$\gamma(t_0) = \operatorname{Re}\{\zeta((s_1, (E/Q) = 0), \zeta((s_2, (E/Q) = 0), \zeta((s_3, (E/Q) = 0))\}, (s_1, (E/Q) = 0)\}, (s_2, (E/Q) = 0)\}, (s_1, (E/Q) = 0)\}$$

$$\omega(t_0) = \operatorname{Im}\{\zeta((s_1, (E/Q) = 0), \zeta((s_2, (E/Q) = 0), \zeta((s_3, (E/Q) = 0))\},\$$

где s_1, s_2, s_3 – нетривиальные нули функции $\zeta(s, E/Q)$ (т.е нули с ненулевой мнимой частью), последовательные по абсолютной величине.

5. Каждый вектор начальных условий, отвечающий классическому решению, структурно определяется так же, как и в. 4, но при этом значения

 s_1, s_2, s_3 аргумента s являются последовательными по абсолютной величине уже тривиальными нулями функции $\zeta(s, E/Q)$, т.е последовательными нулями с нулевой мнимой частью.

6. Множество начальных условий для классического решения является подбикомплексом в бикомплексе начальных условий, соответствующих общему решению (бикомплекс – комплекс с Z_2 -градуированным дифференциалом, определение комплекса см. в [7]).

Замечание. 1. В данном утверждении представлена зависимость M(s) от переменной $s = t/Z_2[t \to -t]$, которая является обратимым временем исходных уравнений, а также зависимости $\gamma(t)$ и $\omega(t)$ от вещественного времени t.

2. Структурное отличие формулы для решения случая Эйлера по сравнению с формулой для общего решения уравнений Эйлера–Пуассона из [1] состоит в наличии нормировочного множителя { $\zeta(s, E/Q) = 0$ } в показателе экспоненты. Данный множитель представляет все множество начальных условий исходной задачи, инвариантных относительно инволюции $Z_2[t \rightarrow -t]$ (лемма 14), и его наличие отражает тот факт, что исходные дифференциальные уравнения являются корректной задачей Коши. В связи с этим, естественно дополнить и формулу общего решения из [1], добавив в нее нормировочный множитель такого же типа. Отметим, что это дополнение не отражается на доказательстве, поскольку соответствующая нормировка является его ключевой конструкцией.

Приведем соответствующее нормировочное дополнение общего решения уравнений Эйлера–Пуассона.

Теорема 2. Универсальное пространство решений общих уравнений Эйлера-Пуассона, описывающих динамику вектора $M(s), s \in C$ кинетического момента тела, представляется следующими функциями:

$$M(s) = \exp(L(s, \{E/Q\})(L(s, E/Q) = 0)),$$

где $\{E/Q\}$ – множество эллиптических кривых E/Q над полем рациональных чисел Q, функции L(s, E/Q) являются L-функциями эллиптических кривых E/Q (см. [4]), а выражения L(s, E/Q) = 0 имеют структуру векторов с шестью компонентами и представляют все множество начальных условий общих уравнений Эйлера-Пуассона.

4. Определения объектов, входящих в формулировки утверждений. Приведем краткую сводку определений объектов, которые используются в данной работе и связаны с кривыми E/Q, опирающуюся на руководство [4] и цитируемую там литературу.

4.1. Эллиптические кривые над Q и их основные характеристики. Эллиптическая кривая E/Q задается уравнением в аффинной форме

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

где $a_1, a_2, a_3, a_4, a_6 \in Q$.

Дискриминант эллиптической кривой E/Q имеет следующий вид:

$$\Delta = 9b_2b_4b_6 - b_2^2b_8 - 8b_4^3 - 27b_6^2$$

Формулы, выражающие a_i через b_i , см. в [4].

Если минимальное уравнение эллиптической кривой E/Q при редукции по простому модулю p – опять гладкая кубическая кривая (гладкость эллиптической кривой означает, что ее дискриминант $\Delta(E/Q)$ не равен нулю), то в этом случае говорят, что кривая E/Q имеет в p хорошую редукцию, а такое p называется "хорошим p".

Если минимальное уравнение эллиптической кривой E/Q при редукции по простому модулю p – сингулярная кривая, то в этом случае говорят, что кривая E/Q имеет в p плохую редукцию, а такое p называется "плохим p".

Такие "плохие" простые числа p в точности являются простыми делителями дискриминанта $\Delta(E/Q)$ эллиптической кривой E/Q.

Кривая E/Q при плохой редукции в p допускает единственную сингулярную точку с координатами в F_p . Всегда можно сделать такую линейную замену координат, что точка с координатами (0,0) становится такой сингулярной точкой при редукции кривой E/Q по модулю всех "плохих p". Такая замена не меняет соответствующего уравнения и приводит к равенству $a_3, a_4, a_6 = 0 \pmod{p}$ для всех "плохих p".

Если при этом касательные к кривой E/Q в точке (0,0) совпадают, то имеет место сравнение $x^2 + a_1x - a_2 = 0 \pmod{p}$.

4.2. Полустабильные эллиптические кривые над Q. Эллиптическая кривая E/Q называется полустабильной в простом p, если либо p – хорошее, либо p такое плохое, что ее касательные в сингулярной точке (0,0) различны. Это означает, что дискриминант полинома $x^2 + a_1x - a_2$ не равен нулю по модулю p и что $a(p) = \pm 1$.

Эллиптическая кривая E/Q называется полустабильной, если она полустабильна во всех простых p.

4.3. Дзета-функции эллиптических кривых над Q. Дзета-функция редукции кривой E_p – редукции эллиптической кривой E/Q над Q по модулю p выглядит следующим образом:

$$\zeta(s, E_p) = \exp\left(\sum_{n=1}^{\infty} \frac{|E_p(F_{p^n})|u^n}{n}\right),\,$$

где F_{p^n} – поле из p^n элементов, $u = p^{-s}$, E_p – редукция эллиптической кривой по модулю p (данная редукция – переход от области определения Q к новой области определения – полю F_p), $|E_p(F_{p^n})|$ – число точек эллиптической кривой $E_p(F_{p^n})$.

5. Приведение эквивариантной квадратуры для волчка Эйлера к полному дифференциалу. Проведем указанную в названии параграфа процедуру посредством приведения уточненного знаком ± и областью определения абелевого дифференциала (3) к дифференциалу от некоторой

специальной функции комплексного аргумента s. Эта процедура приводит к нахождению явной эквивариантной функциональной зависимости между вещественным временем t и комплексным временем s. Этапы данной процедуры будут соответствовать леммам 1–11. Далее останется обратить эту зависимость (леммы 12–14).

5.1. Предварительная структура эквивариантного уточнения квадратуры волчка Эйлера. В силу модели фазовой динамики волчка Эйлера (см. [3]) в кольце (обозначим его K) и при учете симметрии $Z_2[t \to -t]$ интеграл правой части формулы (3), обозначаемый далее через I(k), можно преобразовать следующим образом:

$$\pm \int_0^u \frac{du}{\sqrt{(1-u^2)(1-k^2u^2)}} (\operatorname{mod} Z_2[t \to -t]) =$$
$$= \int_{K^2 \otimes Z_2[t \to -t]}^u \frac{du_{eq}}{\sqrt{(1-u_{eq}^2)(1-k^2u_{eq}^2)}} = \boldsymbol{I}(k),$$

где $u_{eq} = u \otimes Z_2[t \to -t].$

5.2. Поэтапное вычисление эквивариантной квадратуры. Дадим определения и введем необходимые для дальнейшего объекты.

Определение 1. (Алгебраическое определение группы Клейна D_2 (см. [8])). Группой Клейна, обозначаемой через D_2 , называется группа, связывающая следующим образом знакопеременные группы подстановок A_4 и A_3 из четырех и трех элементов соответственно:

$$A_4/\{id, (12)(34), (13)(24), (14)(23)\} \cong A_{3,2}$$

где $\{id, (12)(34), (13)(24), (14)(23)\} \cong D_2.$

Поскольку каждая указанная нетождественная подстановка представляет поворот $\operatorname{Rot}_O^{\pi}$ правильного тетраэдра вокруг соответствующей реберной медианы (отрезка, соединяющего середины двух взаимно противоположных ребер тетраэдра с центром O) на угол π , то можно дать геометрическую версию этого определения.

Определение 2. (Геометрические определения группы Клейна D_2 (см. [8])).

1. Группа D_2 изоморфна множеству поворотов тетраэдра на угол π вокруг всех трех реберных медиан вместе с тождественным поворотом, и при этом композиция любых двух таких поворотов дает такой же поворот вокруг третьей медианы.

2. Группа D_2 изоморфна множеству всех поворотов ромба на плоскости.

Определение 3. Пусть $S^1(\text{Sym}(T))$ и $S^1(\text{Rot}(T))$ – орбиты, заметаемые точкой касания сферы S^2 из Замечания 2 при ее качении по плоскости E^2 , где

$$\operatorname{Sym}(T) \cong \operatorname{Image}(\operatorname{Rot}_O^{\pi}(T) \to S^1_+), \quad \operatorname{Rot}(T) \cong \operatorname{Image}(\operatorname{Rot}_O^{\pi}(T) \to S^1_{\times}),$$

 $S^{1}_{+}, S^{1}_{\times}$ – стандартная окружность S^{1} , снабженная структурой аддитивной и мультипликативной группы соответственно.

Тогда положим

$$S^1_{\text{diag}} \cong \text{Diag}(S^1(\text{Rot}(T)) \circ S^1, (\text{Sym}(T))),$$

где знак "°" обозначает композицию групповых законов на сомножителях. Эта диагональ корректно определена в силу коммутативности сомножителей.

Определение 3 отражает тот факт, что группа D_2 является центральной симметрией $Z_O(T)$ тетраэдра T, что влечет следующие изоморфизмы:

$$S^1_{\text{diag}} \cong S^1(\operatorname{Rot}(T) \cong \operatorname{Sym}(T)) \cong Z_O(T)[\operatorname{Rot}(T), \operatorname{Sym}(T))/\operatorname{Rot}(T) \cong \operatorname{Sym}(T)].$$

Также можно записать

$$S^1_{\text{diag}} \cong S^1(\text{Rot}(T) \cong \text{Sym}(T)) \cong S^1(D_2^{\times} \cong D_2^+) \cong S^1(D_2^{\text{diag}}),$$

где $D_2^{\text{diag}} \cong \text{Diag}(D_2^{\times} \circ D_2^+)$ – корректно определенная диагональ изоморфных коммутативных групп.

Лемма 1. 1. Группа $D_2(Q)$ является генератором транзитивного качения тетраэдра, вписанного в сферу S^2 , по плоскости E^2 .

2. Группа $D_2(R)$ является генератором двойственной конструкции – транзитивного качения сферы со вписанным в нее тетраэдром, по плоскости.

Доказательство. Заметим, что качение, упомянутое в п. 1 леммы, представляется симметрией $SO(3, E^2/sp(Q)/\{$ Множество поворотов ромба $\})$, где sp(Q) – отображение последовательного пересчета всех рациональных чисел посредством пересчета всех целых точек плоскости E^2 по точкам архимедовой спирали.

Соответственно, качение в п. 2 леммы представляется симметрией $SO(3, E^2/sp(R)/\{$ Множество поворотов ромба $\})$, где sp(R) – отображение последовательного пересчета всех рациональных чисел посредством пересчета всех целых точек плоскости E^2 по отрезкам архимедовой спирали.

Приведенные факторы плоскости E^2 корректно определены, так как отображения sp(Q), sp(R) являются отношениями эквивалентности. \Box

Определение 4. Следом (Trace), детерминантом (Det) и дискриминантом (Discr) отображения композиции $D_2(R) \circ D_2(Q)$ будем называть след, детерминант и дискриминант оператора $SO(3, D_2(R) \circ D_2(Q))$, которые определяются соответствующим образом в рамках стандартной линейной алгебры.

Корректность данного определения следует из леммы 1, где операторы $D_2(R), D_2(Q)$ определены, а также следующего утверждения.

Лемма 2. Оператор $D_2(R) \circ D_2(Q) / D_2^{\text{diag}}$ является генератором центральной симметрии 3-мерной целочисленной решетки E^3/Z^3 .

Доказательство. Надо заметить, что оператор $SO(3, S_4)/(D_2(R) \circ D_2(Q))/D_2^{\text{diag}})$ является оператором центральной симметрии куба в E^3 , где S_4 – четырехэлементная группа подстановок, которая изоморфна полной группе самосовмещений куба.

Таким же образом определяются и соответствующие инварианты для оператора $\mathcal{D} = (D_2(R) \circ D_2(Q))^{N \to \infty}$, являющегося N-кратной композицией оператора $D_2(R) \circ D_2(Q)$, имеющего смысл генератора оператора \mathcal{D} .

Опишем теперь явно указанные инварианты оператора \mathcal{D} в терминах модели динамики волчка Эйлера в кольце К.

Лемма 3. Инварианты представления оператора D в фазовой динамике волчка Эйлера, реализованной в кольце K, выражаются через объект S^1_{diag} :

$$\begin{aligned} \operatorname{Trace}(\mathcal{D}/(D_2^{\operatorname{diag}})^{N\to\infty}) &: K \to S^1[\operatorname{Sym}(T)] \cong S^1_{\operatorname{diag},+}, \\ \operatorname{Det}(\mathcal{D}/(D_2^{\operatorname{diag}})^{N\to\infty}) &: K \to S^1[\operatorname{Rot}(T)] \cong S^1_{\operatorname{diag},\times}, \\ \operatorname{Discr}(\mathcal{D}/(D_2^{\operatorname{diag}})^{N\to\infty}) &: K \to S^1[\operatorname{Sym}(T) \cong \operatorname{Rot}(T)] \cong S^1_{\operatorname{diag},+,\times}, \\ \mathfrak{ede} \ S^1_{\operatorname{diag},+} &\cong S^1_{\operatorname{diag}}/S^1_{\times}, \quad S^1_{\operatorname{diag},+} \cong S^1_{\operatorname{diag},+}, \quad S^1_{\operatorname{diag},+,\times} \cong S^1_{\operatorname{diag}}. \end{aligned}$$

Доказательство. 1. Покажем, что отображение $D_2(R) \circ D_2(Q)$ является генератором собственной симметрии сепаратрисной структуры в кольце K.

а) Вводя на каждой компоненте гладкости сепаратрисы плоскую метрику (что можно сделать в силу ее тривиального расслоения на двоякоасимптотические траектории), замечаем, что отображение $sp(R) \circ sp(Q)$ отображает комплексную плоскость $E^2 \cong C$ на каждую из компонент гладкости сепаратрисы.

б) Отображение $Sp \cong sp(R) \circ sp(Q) / \{ M$ ножество поворотов ромба $\})$ отображает критическую полосу на плоскости C[s] (полосу, ограниченную прямыми $\{\operatorname{Re}(s) = 0\}, \{\operatorname{Re}(s) = 1\}\}$, с действием на ней отображения зеркальной симметрии относительной вещественной и мнимой осей одновременно (эта симметрия и представляет симметрию обратимости по времени $Z_2[t \rightarrow -t])$ уже на всю сепаратрису.

в) В силу леммы 1 имеем $\text{Gener}(Sp) \cong D_2(R) \circ D_2(Q).$

2. Из определения объектов Sym(T) и Rot(T) и леммы 1, где группы $D_2(R), D_2(Q)$ определены, следует, что

$$D_2(Q) \cong S^1(\operatorname{Sym}(T)) \cong \operatorname{Gener}(S^1_+), \quad D_2(R) \cong S^1(\operatorname{Rot}(T)) \cong \operatorname{Gener}(S^1_\times).$$

3. В соответствии с п. 1 данного доказательства объек
т S^1_+ представляет орбиту "лево-правого" вращения границы ∂K кольца K, а S^1_{\times} соответственно представляет орбиту "право-левого" вращения границы ∂K кольца K. При этом S^1_+ , S^1_{\times} представляют периодические движения волчка Эйлера вокруг наименьшей и наибольшей осей инерции, симметризованные отобра-

жением $Z_2[t \rightarrow -t].$

Закавыченность терминов "лево-правые" и "право-левые" означают условность выбора порядка использования терминов "лево" и "право".

4. Из п. 2 следует, что корректно определена диагональ

$$S^1_{\text{diag}} \cong \text{Diag}(S^1(\text{Rot}(T)) \circ S^1(\text{Sym}(T))) \cong S^1(\text{Rot}(T) \cong \text{Sym}(T)).$$

5. В соответствии с п. 1 доказательства объект S^1_{diag} представляет максимальное собственное пространство оператора \mathcal{D} , состоящее из пары сепаратрисных гиперболических движений, симметризованной указанным образом посредством отображения $Z_2[t \to -t]$; также S^1_{diag} – неподвижное множество при зеркальной симметрии посредством оператора \mathcal{D} и имеет смысл образа критической прямой $\{\operatorname{Re}(s) = \frac{1}{2}\}$ из плоскости C[s] при этой зеркальной симметрии. При этом S^1_{diag} представляет периодическое движение волчка Эйлера вокруг средней оси инерции, симметризованное отображением $Z_2[t \to -t]$.

6. Из определения инвариантов Trace, Det и Discr для оператора ${\mathcal D}$ следует, что

$$\begin{aligned} \operatorname{Trace}(\mathcal{D}/(D_2^{\operatorname{diag}})^{N \to \infty}) &\cong S_+^1, \quad \operatorname{Det}(\mathcal{D}/(D_2^{\operatorname{diag}})^{N \to \infty}) \cong S_\times^1, \\ \operatorname{Discr}(\mathcal{D}/D_2^{\operatorname{diag}}) &\cong S_{\operatorname{diag}}^1. \end{aligned}$$

7. Теперь лемма следует из п. 4 доказательства и определения $S^1_{\text{diag},+}$, в соответствии с которым

$$S^1_{\text{diag},+} \cong S^1_{\text{diag}}/S^1_{\times}, \quad S^1_{\text{diag},+} \cong S^1_{\text{diag}}/S^1_{+}, \quad S^1_{\text{diag},+,\times} \cong S^1_{\text{diag}}.$$

Замечание. $S^1_{\text{diag},+,\times}$ имеет смысл решения неявного уравнения $[\gamma, \omega] = 0.$

Перейдем непосредственно к координатизации локальных эквивариантных автоморфизмов кольца K – фактор-симметрий (локальных симметрий) кольца K относительно его сепаратрисной структуры.

Лемма 4. 1. "Лево-правые" локальные автоморфизмы кольца K координатизируются множеством всех простых чисел p с их естественным порядком

$$p = p(N) = H^0(+\partial K, Z_2^N[t \to -t]),$$

где N – степень итерации отображения $Z_2[t \rightarrow -t]$ – последовательно пробегает все натуральные числа; $+\partial K$ – граница кольца K с фиксированной ориентацией на граничных противоположно ориентированных окруженостях границы ∂K .

2. "Право-левые" локальные автоморфизмы кольца K координатизируются множеством комплексных чисел C = C[s]

$$s = H^0(-\partial K, Z_2^N[t \to -t]),$$

где $-\partial K$ – граница кольца K с противоположной ориентацией на граничных окружностях границы $+\partial K$.

Доказательство. Покажем, что для любого простого числа p существует такое натуральное число N, зависящее от p, что выполнено условие п. 1 данной леммы. Действительно,

$$H^{0}(+\partial K, Z_{2}^{(N))}[t \to -t]) = H^{0}(S^{1}, S^{1}_{\text{diag}}(\text{mod }N)/\backslash C) =$$

= $H^{0}(S^{1}, S^{1}_{\text{diag},+}(\text{mod }N) \otimes C) =$
= $H^{0}(S^{1}_{\text{diag}}, \text{Trace}((D_{2}(R) \circ D_{2}(Q))/D^{\text{diag}}_{2})^{N} \otimes C) =$
= $H^{0}(S^{1}, (Z^{\text{diag}}_{2}[\mathcal{N}])^{N}_{CW}),$

где

j

$$Z_2^{\text{diag}}[\mathcal{N}] = \text{Trace}(\text{Diag}(\text{Gener}(D_2(R)) \circ \text{Gener}(D_2(Q)))) \cong \text{Trace}(D_2^{\text{diag}})$$

– след (имеющий групповую структуру) оператора D_2^{diag} , являющегося корректно определенной диагональю. В силу леммы 2 оператор $D_2(R) \circ D_2(Q)$ является генератором центральной симметрии 3-мерной целочисленной решетки E^3/Z^3 . Поэтому имеется следующее представление для $Z_2^{\text{diag}}[\mathcal{N}]$:

$$Z_2^{\text{diag}}[\mathcal{N}] = \text{Trace}(Z_O^{E^3/Z^3}[D_2(R) \circ (D_2(Q)]/D_2^{\text{diag}}).$$

Индекс CW обозначает, что объект $Z_2^{\text{diag}}[\mathcal{N}])_{CW}^N$ имеет дополнительную структуру – структуру CW-комплекса, т.е. клеточного топологического пространства, обладающего точной размерной стратификацией: *n*-мерный остов (для любого *n*) данного пространства является границей его n + 1-мерного остова (подробности см. в [7]).

Орбита группы $Z_2^{\text{diag}}[\mathcal{N}])_{\text{CW}}^N$ реализуется диаметром окружности S_{diag}^1 , являющегося натурально-значной величиной. Это следует из того факта, что группа $Z_2^{\text{diag}}[\mathcal{N}]_{\mathcal{CW}}^N$ имеет следующую геометрическую интерпретацию – она является натуральным параметром на точках архимедовой фактор-спирали, последовательно пересчитывающей все целые точки на стандартной плоской целочисленной решетке (см. доказательство леммы 1 и [2]).

целочисленной решетке (см. доказательство леммы 1 и [2]). Поскольку Gener $Z_2^{\text{diag}}[\mathcal{N}] \cong Z_2[0,1]$, то натуральные числа M, представляемые областью значений оператора $Z_2^{\text{diag}}[\mathcal{N}])_{\text{CW}}^N$, являются простыми, так как делятся только на себя, т.е. на M, где $M = Z_2^{\text{diag}}[\mathcal{N}]_{CW}^{N(M)}(1)$, а также на 1, где $1 = Z_2^{\text{diag}}[\mathcal{N}]_{CW}^{N(M)}(0)$.

Следовательно, получаем, что для любого простого числа p существует такое натуральное N, что

$$H^{0}(S^{1}, (Z_{2}^{\text{diag}}[\mathcal{N}])_{\text{CW}}^{N}) = H^{0}(S^{1}, Z_{p(N)}),$$

где $Z_{p(N)}$ – группа из простого числа p(N) элементов.

Теперь осталось заметить, что поскольку симметрия $H^0(S^1, Z_{p(N)})$ является канонической координатой на правильном *p*-угольнике, то

$$H^0(S^1, Z_{p(N)}) = p.$$

2. Доказательство данного пункта проводится по схеме доказательства п. 1, но имеет свою специфику в финальной части. В отличие от утверждения п. 1, ответ оказывается не зависящим от N.

a). Преобразуем исходную скалярную симметрию к максимально простому виду, тензорно умножая ее на симметрию $Z_2^N[t \to -t]$) над R:

$$\begin{aligned} H^0(-\partial K, Z_2^N[t \to -t]) &= \\ &= H^0(-\partial K \otimes_R Z_2^N[t \to -t], \quad Z_2^N[t \to -t] \otimes_R Z_2^N[t \to -t]) = \\ &= H^0(K, Z_2^N[t \to -t]) = \\ &= H^0(C, S^1 \otimes_R \operatorname{Det}(D_2(R) \circ D_2(Q)/D_2^{\operatorname{diag}})^N) = H^0(C, S^1_{\operatorname{diag},\times}(\operatorname{mod} N)) = \\ &= H^0(C, S^1_{\operatorname{diag}}(\operatorname{mod} N) \backslash C) = H^0(C, (Z_2^{\operatorname{diag}}[C])_{CW}^N)), \end{aligned}$$

где

$$\mathbb{Z}_2^{\text{diag}}[C] = \text{Det}(\text{Diag}(\text{Gener}(D_2(R)) \circ \text{Gener}(D_2(Q)))) \cong \text{Det}(D_2^{\text{diag}}).$$

Также имеет место эквивалентное представление:

$$Z_2^{\text{diag}}[C] = \text{Det}(Z_O^{E^3/Z^3}[D_2(R) \circ (D_2(Q)]/D_2^{\text{diag}}).$$

б). Поскольку архимедова фактор-спираль, на отрезках которой натуральным параметром является симметрия-комплекс $(Z_2^{\text{diag}}[C])_{CW}^N$, параметризует классы параллельных прямых с рациональными коэффициентами на плоскости E^2 , то

$$\lim_{N \to \infty} H^0(C[s], S^1_{\operatorname{diag}, \times}(\operatorname{mod} N)) = H^0(C[s] \cup \infty, S^1_{\operatorname{diag}, \times})) = H^0(\Lambda[s], A[Q]),$$

где $\Lambda[s], A[Q]$ – плоскость Лобачевского и ее рациональный абсолют в модели Клейна в круге с каноническими координатами $s \in C$ и $t \in R$ соответственно.

в). Теперь утверждение п. 2 следует из того, что $H^0(\Lambda[s], A[Q]) = s.$ \Box

Лемма 5. Нейтральные (бидвусторонние) локальные автоморфизмы кольца К координатизируются следующим образом:

$$p^{-s} = H^0(+\partial K/ - \partial K, Z_2^{p(N)}[t \to -t])$$

Доказательство. 1. Из леммы 4 следует, что симметризация типов локальных биавтоморфизмов динамики в кольце *К* имеет вид

$$H^{0}(+\partial K/-\partial K, Z_{2}^{p(N)}[t \to -t]) =$$

$$= H^0(S^1_{\text{diag}}(\text{mod } p(N)) \setminus C, S^1_{\text{diag}}(\text{mod } p(N))/C) = \text{Ad}_{C^0}^{(p)} S^1_{\text{diag}}$$

2. Соответствующее объединение схем вычислений п. 1 и п. 2 выглядит так

$$\operatorname{Ad}_{C^0}^p S^1_{\operatorname{diag}} = H^0(S^1_{\operatorname{diag}}, S^1_{\operatorname{diag}}(\operatorname{mod} N(p))) =$$
$$= H^0(S^1_{\operatorname{diag}}, \operatorname{Discr}((D_2(Q) \circ (D_2(R))/D_2^{\operatorname{diag}})^N) \otimes C)))) =$$
$$= H^0(S^1_{\operatorname{diag}}, [(S^1_{\operatorname{diag}, \times})(\operatorname{mod} N(p)) \circ [(S^1_{\operatorname{diag}, +})(\operatorname{mod} N(p))).$$

3. Сделаем тождественное преобразование: умножим слева обе симметрии, относительные когомологии которых мы сейчас вычисляем, на симметрию $(S^1_{\text{diag},\times}(\text{mod }N(p)))^{-1}$, которая корректно определена, как и указанное умножение. Тогда получим

$$\mathrm{Ad}_{C^0}^p S^1_{\mathrm{diag}} = H^0((S^1_{\mathrm{diag},\times}(\mathrm{mod}\,N(p)))^{-1} \circ S^1_{\mathrm{diag}}, S^1_{\mathrm{diag},+}(\mathrm{mod}\,N(p))).$$

4. Из леммы 4 следует, что

$$H^{0}(((S^{1}_{\mathrm{diag},\times}(\mathrm{mod}\,N(p))^{-1}\circ S^{1}), S^{1}_{\mathrm{diag},+}(\mathrm{mod}\,N(p)) = H^{0}((S^{1}\otimes C[-s], S^{1}[Z_{p(N)}]).$$

5. Симметрия $H^0(S^1 \otimes C[-s], S^1[Z_{p(N)}])$ является непрерывным (класса C^0) автоморфизмом окружности S^1_{diag} , и поэтому представляется ее соответствующим экспоненциальным отображением – экспоненциальным отображением окружности $S^1 \otimes C[-s]$ с основанием (экспонентой) p(N):

$$\operatorname{Ad}_{C^0}^p S^1_{\operatorname{diag}} = H^0(S^1 \otimes C[-s], S^1[Z_{p(N)}]) = \exp_{p(N)}^{C^0}(S^1 \otimes C[-s]) = p^{-s}. \ \Box$$

Замечание. Данная лемма показывает, что выражение p^{-s} является собственным значением оператора зеркальной симметрии "уровня p" кольца K.

Теперь установим связь модели локальной динамики волчка Эйлера в кольце K и соответствующей ей локализацией специальной эллиптической кривой E/Q в поле F_{p^n} .

Лемма 6. Пусть кривая E_C над C, соответствующая классической квадратуре (3), задается аффинным уравнением в нормальной форме $y^2 = x^3 + ax + b$, где $a, b \in R$. Тогда ее эквивариантное уточнение посредством отображения $Z_2[t \to -t]$ является эллиптической кривой E/Q над Q:

$$E_C \otimes Z_2[t \to -t] \cong (E/Q)[\{y^2 = x^3 + px + q\}],$$

где р, q – некоторые простые числа и кривая E/Q является полустабильной.

Числа p, q имеют смысл следующих нульмерных инвариантов инволюции $Z_2[t \mapsto -t]$:

$$p = \operatorname{Trace}(Z_2[t \mapsto -t]|_{t=t_0}), \qquad q = \operatorname{Det}(Z_2[t \mapsto -t]_{t=t_0})$$

и являются эквивариантными начальными данными, полностью определяющими последующую динамику волчка Эйлера:

$$q = \gamma(t_0/Z_2[t \mapsto -t]), \qquad p = \omega(t_0/Z_2[t \mapsto -t]).$$

Замечание. Всюду далее под кривой E/Q понимается именно эллиптическая кривая над Q из данной леммы.

Д о к а з а т е л ь с т в о. 1. Классический абелев дифференциал соответствует эллиптической кривой над R с уравнением в форме Вейерштрасса, имеющим вид $y^2 = x^3 + ax + b$, где $a, b \in R$. Как топологическое пространство кривая E_C представляется фактором

$$E_C \cong C[z]/(Z+Z).$$

Образ E_C^{eq} кривой E_C как топологического пространства при ее эквивариантном уточнении посредством отображения $Z_2[t \to -t]$ имеет вид $E_C^{eq} \cong E_C \otimes Z_2[t \to -t]$ и представляется эквивариантным фактором

$$E_C^{eq} \cong (C[z]/(Z+Z)) \otimes (Z_2[t \to -t])_{CW} \cong$$
$$\cong (C[z]/sp(Q)/D_2(R) \circ D_2(Q).$$

Так как объект $sp(Q)/D_2(R) \circ D_2(Q)$ представляет двумерную решетку, определенную над полем рациональных чисел Q, и $s \cong z/sp(Q)/D_2(R) \circ D_2(Q)$, то пространство E^{eq} представляется одномерным абелевым многообразием над полем Q

$$C[z]/sp(Q)/D_2(R) \circ D_2(Q) \cong C[s]/(Q+Q),$$

т.е. является по определению эллиптической кривой над $Q: E_C^{eq} \cong E/Q$. Координата $s = z/Z_2[t \to -t]$ имеет канонический смысл: она является канонической координатой в критической полосе дзета-функции Римана с дополнительным действием на ней зеркальной симметрии относительно критической прямой (см. также п. 1 доказательства леммы 3), снабженной канонической координатой $t = t/Z_2[t \to -t]$. В нашем случае критическая прямая снабжена дополнительно целочисленной решеткой.

Используя лемму 4, представим E_C^{eq} через образующие и соотношения:

$$E_C^{eq} \cong H_1(c_1(E_C) \times c_2(E_C), Z_2[t \to -t]) \cong H_1(\text{Gener}((D_2^{\text{diag}})_{CW}), C[s]) \cong$$
$$\cong H_1((c_{\text{diag}})_{CW}, C) \cong H_1(\{(x, y) | (y^2 = x^3)\}, C) / H_1(\{x\}, C) / H_1(\{y\}, C[s]),$$

где циклы $c_i(E_C), c_i(E/Q), i = 1, 2$, рассматриваются как циклы топологических многообразий, указанных выше; x, y – образующие группы D_2^{diag} (см. ее определение в контексте определения объекта S_{diag}^1), а $y^2 = x^3$ – соотношение в D_2^{diag} .

Рассматривая аддитивную запись фактор-симметрии $H_1((c_{\text{diag}})_{CW}, C)$, получаем ее представление в аффинных координатах $x, y \in C[s]$, совпадающих с указанными выше образующими группы $D_2(R)$:

$$H_1(c_{\text{diag}})_{CW}, C) = \{y^2 = x^3 + px + q\}$$

где с учетом леммы 3 имеют место соотношения

$$b \otimes Z_2[t \to -t]|_{t=t_0} = S^1_{\operatorname{diag},+}(\operatorname{mod} N) = \operatorname{Trace}(Z_2[t \mapsto -t]|_{t=t_0}) = q;$$
$$a \otimes Z_2[t \to -t]|_{t=t_0} = S^1_{\operatorname{diag},\times}(\operatorname{mod} N) = \operatorname{Det}(Z_2[t \mapsto -t]_{t=t_0}) = p.$$

Теперь первое утверждение леммы следует из эквивалентности следующих выражений, записанных в соответствующих канонических координатах:

$$\{y^2 = x^3 + px + q, (x, y) \in C[s]\} \leftrightarrow \{y^2 = x^3 + px + q, (x, y) \in C[z]\},\$$

поскольку

$$\operatorname{Gener}(\operatorname{Ker}(C[s] \to C[z = x + iy])) \cong D_2(R) \circ D_2(Q)$$

и $D_2(R) \circ D_2(Q) \cong \operatorname{Aut}(\{x, y\}).$

2. Полустабильность кривой E/Q следует из того, что особые точки образа отображения проекции $C[s] \to C[z = x + iy]$ имеют в качестве автоморфизмов группу, изоморфную группе D_2 , изоморфную по определению группе поворотов ромба. Поэтому особые точки аффинного уравнения кривой E/Q в аффинной карте $C^2[x, y]$ имеют не совпадающие касательные, что по определению соответствует особым точкам именно полустабильной кривой. \Box

Замечание. Таким образом, кривая E/Q имеет смысл спектральной кривой фазовой динамики именно волчка Эйлера и тем самым полностью кодирует его фазовую динамику.

Кривая E/Q в силу лемм 1, 3 может быть реализована в евклидовом пространстве E^3 как орбита специальной непрерывной бимонодромии правильного тетраэдра с генератором $D_2^{\times} \circ D_2^+$ и поэтому имеет смысл спектральной кривой фазовой динамики именно волчка Эйлера.

Лемма 7. Локальные эквивариантные автоморфизмы границы ∂K кольца К по модулю их центра – множества эквивариантных автоморфизмов сепаратрисной структуры в кольце K – представляются локализацией некоторой эллиптической кривой E/Q в поле F_{p^n} :

$$H_1(\partial K, S^1_{\text{diag}}(\text{mod } N(p)) \cong H_1(E_C, Z^p_2[t \to -t]) \cong$$

$$\cong H_1(c_1^{(p)}(E/Q)_{CW[n]} \times c_2^{(p)}(E/Q)_{CW[n]}, C) \cong (E/Q)(F_{p^n}),$$

где вид кривой E/Q конкретизирован в лемме 6.

Замечание. При этом натуральное число nимеет смысл
 числа биоборотов границы $+\partial K$ кольцаK.

Доказательство. В силу лемм 3 и 4 имеют место следующие изоморфизмы:

$$H_1(c_1^{(p)}(E/Q)_{CW[n]}, C) \cong H_1(c_1(E_C), \operatorname{Trace}([D_2(R) \circ D_2(Q)]^{N(p)})) \cong S^1_+(\operatorname{mod} p^n),$$

$$H_1(c_2^{(p)}(E/Q)_{CW[n]}, C) \cong H_1(c_2(E_C), \operatorname{Det}([D_2(R) \circ D_2(Q)]^{N(p)})) \cong S^1_{\times}(\operatorname{mod} p^n),$$

где S^1_+, S^1_\times – окружность S^1 с аддитивной и мультипликативной структурой соответственно. \Box

Лемма 8. Локальные эквивариантные автоморфизмы сепаратрисной структуры в кольце K имеют вид

$$H_1(c^p_{\operatorname{diag}}(E/Q)_{CW[n]}, C) \cong S^1_{\operatorname{diag}}(\operatorname{mod} N(p)).$$

Доказательство. Это следует из следующих изоморфизмов:

$$c_{\text{diag}}^{(p)}(E/Q)_{CW[n]} \cong c_{\text{diag}}(E_C) \otimes \text{Discr}([D_2(R) \circ D_2(Q)]^{N(p)})) \cong S^1(\text{mod } p^n). \quad \Box$$

Лемма 9. Локальные эквивариантные автоморфизмы сепаратрисной структуры в кольце К допускают каноническую координатизацию

$$H^0(c_{\text{diag}}^{(p)}(E/Q)_{CW[n]}, C) = \frac{u^n}{n},$$

 $r\partial e \ u = p^{-s}.$

Доказательство. Доказательство следует из того, что $S^1_{\text{diag}}[p^{-s}]$ обладает структурой ациклического бикомплекса

$$c_{\operatorname{diag}}^{(p)}(E/Q)_{CW} \cong (S_{\operatorname{diag}}^1[p^{-s}])_{CW[n]}.$$

Функция $\frac{u^n}{n}$ является собственной функцией отображения бидифференциала в этом бикомплексе. \Box

Лемма 10. Для эквивариантных автоморфизмов кольца К относительно эквивариантных автоморфизмов его сепаратрисной структуры имеет место разложение

$$H_1(c_1^{(p)}(E/Q)_{CW[n]} \times c_2^{(p)}(E/Q)_{CW[n]}, c_{\text{diag}}^{(p)}(E/Q)_{CW}) \cong$$

$$\cong H_1(c_1^{(p)}(E/Q)_{CW[n]} \times c_2^{(p)}(E/Q)_{CW[n]}, C) \times H_1(c_{\text{diag}}^{(p)}(E/Q)_{CW}, C).$$

Доказательство. Поскольку $c_{\text{diag}}^{(p)}(E/Q)_{CW}$ имеет структуру комплекса

$$c_1^{(p)}(E/Q)_{CW[n]} \xrightarrow{f_1} c_2^{(p)}(E/Q)_{CW[n]} \xrightarrow{f_2} c_{diag}^{(p)}(E/Q)_{CW},$$

где $f_1 \cong D_2(R) \circ D_2(Q_+), \quad f_1 \cong D_2(R) \circ D_2(Q_{\times}),$ то имеется разложение

$$H_1(c_1^{(p)}(E/Q)_{CW[n]} \times c_2^{(p)}(E/Q)_{CW[n]}, c_{\text{diag}}^{(p)}(E/Q)_{CW}) \cong$$

 $\cong H_1(c_1^{(p)}(E/Q)_{CW[n]} \times c_2^{(p)}(E/Q)_{CW[n]}, c_{\text{diag}}^{(p)}(E/Q)_{CW}) \times H_1(c_{\text{diag}}^{(p)}(E/Q)_{CW}, C).$

Тогда доказательство следует из приведенных ниже следующих изоморфизмов

$$H_1(c_i^{(p)}(E/Q)_{CW[n]}, c_{\text{diag}}^{(p)}(E/Q)_{CW}) \cong H_1(c_i^{(p)}(E/Q)_{CW[n]}, C),$$

где i = 1, 2. \Box

Теперь соберем вместе результаты лемм 4–10.

Лемма 11. Подынтегральное выражение в исходной квадратуре (3) является полным дифференциалом следующего вида:

$$d(S^{1}_{\text{diag}}[t_{eq}]) = \zeta(s, E/Q)$$

где бидифференциал $d(S^1_{\text{diag}}[t_{eq}]) = H^0(c^p_{\text{diag}}(E/Q)_{CW[n]}, C)$ – бикомплекс, двойственный по Пуанкаре к бикомплексу $S^1_{\text{diag}}[t_{eq}] \cong H_1(c^p_{\text{diag}}(E/Q)_{CW[n]}, C),$ $t_{eq} = t/Z_2[t \to -t].$

Доказательство. 1. Из лемм 6-8 следует, что

$$d(S^1_{\text{diag}}[t_{eq}](\text{mod }p)) =$$

$$= H^{0}(c_{1}^{(p)}(E/Q)_{CW} \times c_{2}^{(p)}(E/Q)_{CW}, (c_{\text{diag}})_{CW}(\text{mod } p)[t/Z_{2}[t \to -t]]) =$$

$$= \lim_{n \to \infty} H^{0}(S^{1}_{+}(\text{mod } p^{n}) \times S^{1}_{\times}(\text{mod } p^{n}), (c_{\text{diag}})_{CW[n]}(\text{mod } p)[t/Z_{2}[t \to -t]]).$$

Так как из лемм 7–10 следует, что для нульмерных гомологий кривой $(E/Q)_{CW}$ (кривой E/Q с учетом ее эквивариантной $(c_{\text{diag}})_{CW[n]}$ -перенормировки), представляющих $(E/Q)_{CW}$ как множество точек, имеется соотношение

$$H_0(S^1_+(\text{mod }p^n) \times S^1_{\times}(\text{mod }p^n), (c_{\text{diag}})_{CW[n]}) = \sum_{n=1}^{\infty} \frac{|(E/Q)(F_{p^n})|u^n}{n},$$

где F_{p^n} – поле из p^n элементов, $u = p^{-s}$, $(E/Q)(F_{p^n})$ – специализация кривой E/Q в поле F_{p^n} .

Теперь заметим, что нульмерные когомологии кривой $(E/Q)_{CW}$ представляют каноническую параметризацию на $(E/Q)_{CW}$, так как группа ее нульмерных гомологий является S^1 -пространством (топологическим пространством с транзитивным действием группы S^1). Отсюда следует, что

$$H^{0}(S^{1}_{+}(\operatorname{mod} p^{n}) \times S^{1}_{\times}(\operatorname{mod} p^{n}), (c_{\operatorname{diag}})_{CW[n]}) = \exp\left(\sum_{n=1}^{\infty} \frac{|(E/Q)(F_{p^{n}})|u^{n}}{n}\right).$$

2. Имеется естественный изоморфизм S^1 -пространств:

$$H^0(S^1_+(\operatorname{mod} p^n) \times S^1_{\times}(\operatorname{mod} p^n), (c_{\operatorname{diag}})_{CW[n]}) \cong$$

$$\cong H^1(S^1_+(\operatorname{mod} p^n) \times S^1_\times(\operatorname{mod} p^n), (c_{\operatorname{diag}})_{CW[n]})$$

3. В соответствии с леммой 8, п. 2 доказательства данной леммы и определением $d(S^1_{\text{diag}}[t_{eq}] \pmod{p})$, получаем, что

$$H^{0}(S^{1}_{+}(\operatorname{mod} p^{n}) \times S^{1}_{\times}(\operatorname{mod} p^{n}), (c_{\operatorname{diag}})_{CW[n]}) = d(S^{1}_{\operatorname{diag}}[t_{eq}](\operatorname{mod} p)).$$

4. Из определения локальной дзета-функции кривой E/Q (см. [4]) следует

$$d(S^{1}_{\text{diag}}[t_{eq}](\text{mod }p)) = \zeta_p(s, E/Q).$$

5. Эквивариантное объединение выражений п. 1 данного доказательства соответствует естественной склейке локальных дзета-функций $\zeta(s, E/Q)(F_{p^n})$) посредством их произведения по всем простым числам p:

$$d(S^{1}_{\text{diag}}[t_{eq}]) = \prod_{p} \zeta_{p}(s, E/Q) = \zeta(s, E/Q). \quad \Box$$

6. Обращение эквивариантной квадратуры для волчка Эйлера. Данное обращение является результатом нахождения обратной зависимости к функциональной зависимости, описываемой леммой 11, и представляет эквивариантную теорему о неявной функции. Теорема 1, описывающая результат обращения, следует из нижеследующих лемм 12–14.

Следующее утверждение описывает искомое обращение без фиксации начальных условий.

Пусть $I_{C^0}^{-1}(k,n), I_{C^1}^{-1}(k,n)$ – непрерывное и C^1 -гладкое обращения функциональной зависимости (3) соответственно, где указанная здесь векторнозначная структура обращений будет обоснована в лемме 13.

Лемма 12. Непрерывное и гладкое обращения функциональной зависимости (3), представленной в дифференциальной форме в лемме 11, соответственно имеют вид

$$I_{C^0}^{-1}(k,n) = \zeta(s, E_Q)(\zeta(s, E_Q) = 0),$$

$$I_{C^1}^{-1}(k,n) = \exp(\zeta(s, E_Q)(\zeta(s, E_Q) = 0)).$$

Доказательство. В соответствии с леммой 11 подынтегральное выражение в правой части исходной квадратуры (3) имеет следующую структуру полного дифференциала:

$$d(S_{\text{diag}}^{1}[t_{eq}]) = \zeta(s, E_Q);$$

$$d(S_{\text{diag}}^{1}[t_{eq}]) = d_{C^1}(\text{id}d_{C^1})(S_{\text{diag}}^{1}[t_{eq}]) = d_{C^1}(d_{C^0})(S_{\text{diag}}^{1}[t_{eq}])$$

где оператор $\mathrm{id}_{C^1} = d_{C^0}(S^1_{\mathrm{diag}}[t_{eq}])$ – оператор (отображение) оснащения окружности S^1_{diag} канонической непрерывной структурой, индуцированной с прямой R; соответственно, оператор d_{C^1} оснащает окружность S^1_{diag} уже C^1 – гладкой структурой.

Таким образом, последовательно получаем обращения исходной квадратуры классов C^0 и C^1 соответственно:

$$\begin{aligned} d_{C^0}^{-1}(S_{\text{diag}}^1[t_{eq}]) &= \int_{S_{\text{diag}}^1[t_{eq}]} (S_{\text{diag}}^1[t_{eq}]) d_{C^0}(S_{\text{diag}}^1[t_{eq}]) = \\ &= \exp_{C^0}(S_{\text{diag}}^1[t_{eq}]) \text{Ker}(\exp_{C^0}(S_{\text{diag}}^1[t_{eq}])); \\ d_{C^1}^{-1}(S_{\text{diag}}^1[t_{eq}]) &= \int_{S_{\text{diag}}^1[t_{eq}]} (S_{\text{diag}}^1[t_{eq}]) d_{C^1}(S_{\text{diag}}^1[t_{eq}]) = \\ &= \exp_{C^1}(S_{\text{diag}}^1[t_{eq}]) \text{Ker}(\exp_{C^1}(S_{\text{diag}}^1[t_{eq}])), \end{aligned}$$

где Ker обозначает ядра соответствующих операторов дифференцирования.

Заметим теперь, что для рассматриваемых операторов дифференцирования выполняется соотношение

$$d_{C^0}^{-1} \cong \mathrm{id} d_{C^1}.$$

Поэтому в соответствии с леммой 11 и тем, что

$$\operatorname{Ker}(\exp_{C^0}(S^1_{\operatorname{diag}}[t_{eq}])) = \{\zeta(s, E/Q) = 0\},\$$

$$\operatorname{Ker}(\exp_{C^1}(S^1_{\operatorname{diag}}[t_{eq}])) = \exp(\operatorname{Ker}(\exp_{C^0}(S^1_{\operatorname{diag}}[t_{eq}]))) = \{\zeta(s, E/Q) = 0\},\$$

получаем вид для обращения исходной квадратуры класса гладкости C^0 :

$$d_{C^0}^{-1}(S_{\text{diag}}^1[t_{eq}]) = \zeta(s, E/Q) \{ \zeta(s, E/Q) = 0 \}$$

Соответственно, обращение для класса C^1 имеет вид

$$d_{C^1}^{-1}(S_{\text{diag}}^1[t_{eq}]) = \exp(\zeta(s, E/Q)(\zeta(s, E/Q) = 0)). \quad \Box$$

Следующее утверждение устанавливает векторно-значную структуру непрерывного и гладкого обращений и вид зависимостей $\gamma(t), \omega(t)$ без фиксации начальных условий.

Лемма 13. 1. Обращения $I_{C^0}^{-1}(k,n)$ и $I_{C^1}^{-1}(k,n)$ являются 3-значными функциями переменной s.

2. Зависимости переменных $\gamma(t)$ и $\omega(t)$ от вещественного времени t имеют следующий вид:

 $\gamma(t) = \operatorname{Re}(\zeta(\mathbf{s},\mathbf{E}/\mathbf{Q})(\zeta(\mathbf{s},\mathbf{E}/\mathbf{Q})=0)), \quad \omega(\mathbf{t}) = \operatorname{Im}(\zeta(\mathbf{s},\mathbf{E}/\mathbf{Q})(\zeta(\mathbf{s},\mathbf{E}/\mathbf{Q})=0)),$

где Re, Im – вещественная и мнимая части указанных комплексных чисел.

Доказательство. 1. С помощью конструкции спирального отображения из доказательства леммы 1, а также интерпретации группы D_2 как множества симметрий ромба на плоскости, показывается, что следующее отображение накрытия

$$C \to C/((D_2(R) \circ D_2(Q)/D_2^{\text{diag}})^{N \to \infty})$$

отображает плоскость в критическую полосу ($\operatorname{Re} s = 0, \operatorname{Re} s = 1$) дзетафункции Римана так, что образом множества $C/(D_2^{\operatorname{diag}})^{N \to \infty}$ является критическая прямая $\operatorname{Re} s = \frac{1}{2}$.

Действительно, из определения группы D_2 следует, что данное отображение изоморфно отображению ($\gamma - \omega$)-монодромного непрерывного самосовмещения тетраэдра T с центром в его геометрическом центре O, совпадающим с началом координат в E^3 , и также с выделенным базисом, совпадающим с тремя подходящим образом ориентированными реберными медианами:

$$O \to T(\gamma) \to T(\omega) \to T(\gamma) \to T(\omega) \to O.$$

Эквивалентное представление этого отображения бимонодромии реализуется эквивариантным изоморфизмом Пуанкаре

$$\{d_{*,C^0}S^1_{\operatorname{diag}}[\gamma] \cong T_{*,C^0}S^1_{\operatorname{diag}}[\gamma]\} \cong T^*_{C^0}S^1_{\operatorname{diag}}[\omega] \cong \{d^*_{C^0}S^1_{\operatorname{diag}}[\gamma]\},$$

где операторы $d_{*,C^0}, d_{C^0}^*$ представляют канонический базис в пространствах $T_{*,C^0}S_{\text{diag}}^1[\gamma]$ и $T_{C^0}^*S_{\text{diag}}^1[\omega]$ соответственно.

Теперь утверждение п. 1 данной леммы следует из того, что число нетривиальных элементов группы D_2 равно трем (это и дает трехзначность исходных обращений) и из леммы 12 (она дает координаты на указанном отображении накрытия).

2. Аддитивная и мультипликативная части указанного в п. 1 отображения ($\gamma - \omega$)-монодромии тетраэдра являются зеркальной симметрией системы "критической полоса / критическая прямая" относительно вещественной и мнимой прямой соответственно и поэтому представляются так

$$C/((D_2(R) \circ D_2(Q_+)/D_2^{\operatorname{diag}})^{N \to \infty} = \operatorname{Re}\left(\zeta(\mathbf{s}, \mathbf{E}/\mathbf{Q}) \{\zeta(\mathbf{s}, \mathbf{E}/\mathbf{Q}) = 0\},\right)$$

$$C/((D_2(R) \circ D_2(Q_{\times})/D_2^{\text{diag}})^{N \to \infty} = \text{Im}(\zeta(s, E/Q) \{ \zeta(s, E/Q) = 0 \}.$$

Теперь эти факты надо сопоставить с определением $(\gamma - \omega)$ -монодромии тетра
эдра в пространстве E^3 . В результате получаем соответствия

$$\{C/((D_2(R) \circ D_2(Q_+)/D_2^{\text{diag}})^{N \to \infty}\} \cong S^1[D_2(\omega) \circ D_2(\gamma)]/S^1_{\text{diag}}[D_{2,*}^{\text{diag}}],$$
$$C/((D_2(R) \circ D_2(Q_{\times})/D_2^{\text{diag}})^{N \to \infty} \cong S^1[D_2(\omega) \circ D_2(\gamma)]/S^1_{\text{diag}}[D_2^{\text{diag},*}],$$

где, в соответствии с замечанием к лемме 3, $D_{2,*}^{\text{diag}} \cong \{[D_2(\gamma), D_2(\omega)] = 0\}, D_2^{\text{diag},*} \cong \{[D_2(\omega), D_2(\gamma)] = 0\}.$

Поэтому для приведенного отображения $(\gamma - \omega)$ -монодромного непрерывного самосовмещения тетраэдра T его γ -часть представляется так

$$\gamma(s) = d_{*,C^0}(S^1_{\text{diag}}[t_{eq}]) = C[z]/((D_2(R) \circ D_2(Q_+)/D_2^{\text{diag}})^{N \to \infty} = \text{Re}\left(S^1_{\text{diag}}[t/Z_2^\times]\right),$$

где $t \in R$; связь переменных s, z объяснена в параграфе 2 и доказательстве леммы 6, и соответственно – ее ω -часть представляется так

$$\omega(s) = d_{C^0}^*(S_{\text{diag}}^1[t_{eq}]) = C[z]/((D_2(R) \circ D_2(Q_{\times})/D_2^{\text{diag}})^{N \to \infty} = \text{Im}(S_{\text{diag}}^1[t/Z_2^+]),$$

откуда и следует требуемое. 🛛

Теперь, окончательно, теорема 1 следует из следующего утверждения.

Лемма 14. 1. Множество всех начальных условий $\{\gamma(t_0), \omega(t_0)\}$ уравнений волчка Эйлера определяется уравнением $\zeta(s, E/Q) = 0$.

2. Каждый вектор начальных условий, отвечающий общему решению (уточненному классическому), определяется следующим образом:

$$\gamma(t_0) = \operatorname{Re} \left\{ \zeta((s_1, (E/Q) = 0), \zeta((s_2, (E/Q) = 0), \zeta((s_3, (E/Q) = 0)) \right\},\$$

$$\omega(t_0) = \operatorname{Im}\{\zeta((s_1, (E/Q) = 0), \zeta((s_2, (E/Q) = 0), \zeta((s_3, (E/Q) = 0))\}, ((S_1, (E/Q) = 0))\}, ((S_2, (E/Q) = 0))\}$$

где s_1, s_2, s_3 – последовательные по абсолютной величине нетривиальные нули функции $\zeta(s, E/Q)$, т.е нули с ненулевой мнимой частью (эти нули лежат на критической прямой $\operatorname{Re} s = \frac{1}{2}$).

3. Каждый вектор начальных условий, отвечающий классическому решению, структурно определяется так же, как и выше в п. 2, но при этом величины s_1, s_2, s_3 являются последовательными уже тривиальными нулями функции $\zeta(s, E/Q)$, т.е нулями с нулевой мнимой частью.

4. Множество начальных условий для классического решения является подбикомплексом в бикомплексе начальных условий общего решения.

Доказательство. Докажем последовательно каждый пункт.

1. Используя формулу

$$\boldsymbol{I}_{C^0}^{-1}(k,n) = d_{C^0}^{-1}(S_{\text{diag}}^1[t_{eq}]) = \int_{S_{\text{diag}}^1} (S_{\text{diag}}^1[t_{eq}]) d_{C^0}(S_{\text{diag}}^1[t_{eq}]) =$$

$$= \exp_{C^0}(S^1_{\text{diag}}[t_{eq}]) \text{Ker}(\exp_{C^0}(S^1_{\text{diag}}[t_{eq}])) = \zeta(s, E/Q) \{\zeta(s, E/Q) = 0\},\$$

из доказательства леммы 12 получаем, что ядро $\operatorname{Ker}(\exp_{C^0}(S^1_{\operatorname{diag}}[t_{eq}]))$ в точности описывает множество начальных условий уравнений волчка Эйлера.

 Конкретный вектор начальных условий общего решения определяется: – формулами, являющимися эквивариантно двойственными "специализациями в фазовую точку" формулы предыдущего пункта:

$$\{\gamma(t=t_0)\} = \int_{S^1_{\text{diag}}[D^{\text{diag}}_{2,*}((x_1,y_1),(x_2,y_2),(x_3,y_3))]} (S^1_{\text{diag}}[t_{eq}]) d_{C^0}(S^1_{\text{diag}}[t_{eq}]),$$

$$\{\omega(t=t_0)\} = \int_{S^1_{\text{diag}}[D_2^{\text{diag},*}((x_1,y_1),(x_2,y_2),(x_3,y_3))]} (S^1_{\text{diag}}[t_{eq}]) d_{C^0}(S^1_{\text{diag}}[t_{eq}]),$$

где $(x_i, y_i) = (x_i(t_0), y_i(t_0)) \in C \cong E^2$ – точки области определения оператора $D_2^{\text{diag}}; t_0 \in R; i = 1, 2, 3;$ при этом, в силу того, что число нетривиальных элементов группы D_2^{diag} равно трем, и в силу связи объекта S_{diag}^1 с критической прямой $\text{Re} \, s = \frac{1}{2}$ (см. доказательство леммы 3 и п. 2 доказательства леммы 13), получаем

$$\lim_{N\to\infty} (D_2^{\rm diag})^N(\boldsymbol{z}_0) =$$

= {трем последовательным нетривиальным нулям функции $\zeta(s, E/Q)$ },

где оператор $\lim_{N\to\infty} (D_2^{\text{diag}})^N(\boldsymbol{z}_0)$ представляет образ вектора $\boldsymbol{z}_0 = (x_i(t_0), y_i(t_0))$ при итерированном действии на него оператора D_2^{diag} ;

- следующими формулами из доказательства леммы 13:

$$\begin{aligned} d_{*,C^0} S^{1}_{\text{diag}}[t_{eq}]) &= C[z] / ((D_2(R) \circ D_2(Q_+) / D_2^{\text{diag}})^{N \to \infty} = \\ &= \text{Re} \left(S^{1}_{\text{diag}}[t_{eq} / Z_2^{\times}] \right) = \gamma(t), \quad t \in R; \\ d^{*}_{C^0} S^{1}_{\text{diag}}[t_{eq}]) &= C[z] / ((D_2(R) \circ D_2(Q_{\times}) / D_2^{\text{diag}})^{N \to \infty} = \\ &= \text{Im} \left(S^{1}_{\text{diag}}[t_{eq} / Z_2^{+}] \right) = \omega(t), \quad t \in R. \end{aligned}$$

3. Используем конструкцию доказательства леммы 6. Пусть F – декомпактифицирующее отображение, переводящее кривую E/Q в кривую E_C (это отображение, обратное отображению компактификации из доказательства леммы 6). Отображение F переводит $S_{\text{diag}}^1[t_{eq}]$ в R[t], а D_2^{diag} в $D_2(R)$. Отметим, что ядром последнего отображения является группа $D_2(Q)$ (группа расширения комбинаторики знаков при симметризации квадратуры (3) отображением $Z_2[t \to -t]$).

Теперь заметим, что в соответствии с леммой 12 пространство Ітаде F содержится в Ker $(\exp_{C^0}(S^1_{\text{diag}}[t_{eq}])) = \{\zeta(s, E/Q) = 0\}$ как подпространство.

Отметим, что ядром отображения $F: S^1_{\text{diag}}[t_{eq}] \to R[t]$ являются нетривиальные нули функции $\zeta(s, E/Q)$.

4. Справедливость п. 4 данной леммы следует из того, что пространство $\operatorname{Ker}(\exp_{C^0}(S^1_{\operatorname{diag}}[t_{eq}]))$ является бикомплексом с отображением бидифференциала $d_{C^0}S^1_{\operatorname{diag}}[t_{eq}]$, определенным в доказательстве леммы 12. Отметим, что Z_2 -градуировка данного дифференциала индуцирована отображением инволюции $Z_2[t \mapsto -t]$.

Автор благодарит В.В. Козлова и С.Я. Степанова за полезные обсуждения и особо признателен А.М. Ковалеву за поддержку.

Данная работа выполнена при финансовой поддержке грантов РФФИ № 08-01-00600, № 07-01-00295.

- Абраров Д.Л. Точная разрешимость и каноническая модель уравнений Эйлера–Пуассона// Механика твердого тела. – 2007.– Вып. 37. – С. 42–68.
- 2. Маркеев А.П Теоретическая механика. Ижевск, Изд-во РХД, 1999. 570 с.
- Архангельский Ю.А. Аналитическая динамика твердого тела. М.: Наука, 1977. 328 с.
 Кнэпп Э. Эллиптические кривые / Пер. с англ. Ф.Ю. Попеленского. М.: Факториал Пресс, 2004. – 488 с.
- 5. Воронин С.М., Карацуба А.А. Дзета-функция Римана. М.:Физматлит, 1994. 376 с.
- 6. Мак-Миллан В.Д. Динамика твердого тела. М.;Л.: Изд-во иностр. лит., 1951. 468 с.
- Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия: методы и приложения. – М.: Наука, 1986. – 760 с.
- 8. Александров П.С. Введение в теорию групп. М.: Наука, 1980. 144 с.

Вычислительный центр им. А.А. Дородницына РАН, Москва Получено 10.11.08 abrarov@ccas.ru